|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-mn-3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-mn-3 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3277 |
|
- Wer: 30.3692 |
|
- Cer: 10.9030 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 15000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 0.3408 | 0.61 | 1000 | 0.4062 | 47.6841 | 17.3811 | |
|
| 0.2261 | 1.22 | 2000 | 0.3262 | 37.8086 | 13.6466 | |
|
| 0.2135 | 1.83 | 3000 | 0.2863 | 33.7175 | 12.2246 | |
|
| 0.1643 | 2.43 | 4000 | 0.2803 | 32.5978 | 11.4526 | |
|
| 0.1198 | 3.04 | 5000 | 0.2747 | 31.1121 | 11.0533 | |
|
| 0.1279 | 3.65 | 6000 | 0.2757 | 30.7243 | 10.8927 | |
|
| 0.0891 | 4.26 | 7000 | 0.2878 | 30.9209 | 11.0610 | |
|
| 0.0899 | 4.87 | 8000 | 0.2906 | 30.6642 | 11.0799 | |
|
| 0.0648 | 5.48 | 9000 | 0.3054 | 30.5986 | 10.9030 | |
|
| 0.0436 | 6.09 | 10000 | 0.3184 | 30.5222 | 10.9434 | |
|
| 0.0468 | 6.7 | 11000 | 0.3277 | 30.3692 | 10.9030 | |
|
| 0.0291 | 7.3 | 12000 | 0.3411 | 30.9810 | 11.1572 | |
|
| 0.0275 | 7.91 | 13000 | 0.3476 | 31.0684 | 11.1555 | |
|
| 0.0196 | 8.52 | 14000 | 0.3572 | 30.9154 | 11.1065 | |
|
| 0.0159 | 9.13 | 15000 | 0.3600 | 31.0356 | 11.2087 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|