File size: 1,409 Bytes
4c32138 247fd27 9f3821c 4c32138 9f3821c 4c32138 9f3821c 4c32138 9f3821c 4c32138 0a1169d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Load your custom regression model
model_path = "Ditto-premiumdelux-model_transferlearning.weights.h5"
model_path = "Ditto-premiumdelux-model_transferlearning.keras"
#model.load_weights(model_path)
model = tf.keras.models.load_model(model_path)
labels = ['Ditto','Golbat','Koffing']
# Define regression function
def predict_regression(image):
# Preprocess image
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((28, 28)).convert('L') #resize the image to 28x28 and converts it to gray scale
image = np.array(image)
print(image.shape)
# Predict
prediction = model.predict(image[None, ...]) # Assuming single regression value
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
return confidences
# Create Gradio interface
input_image = gr.Image()
output_text = gr.Textbox(label="Predicted Pokemon")
interface = gr.Interface(fn=predict_regression,
inputs=input_image,
outputs=gr.Label(),
examples=["images/Ditto.jpeg", "images/Golbat.jpeg", "images/Koffing.jpeg"],
description="A simple mlp classification model for image classification using the mnist dataset.")
interface.launch()
|