File size: 1,409 Bytes
4c32138
 
 
 
 
 
247fd27
9f3821c
4c32138
 
 
 
9f3821c
4c32138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3821c
4c32138
 
 
9f3821c
4c32138
0a1169d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np

# Load your custom regression model
model_path = "Ditto-premiumdelux-model_transferlearning.weights.h5"
model_path = "Ditto-premiumdelux-model_transferlearning.keras"

#model.load_weights(model_path)
model = tf.keras.models.load_model(model_path)

labels = ['Ditto','Golbat','Koffing']

# Define regression function
def predict_regression(image):
    # Preprocess image
    image = Image.fromarray(image.astype('uint8'))  # Convert numpy array to PIL image
    image = image.resize((28, 28)).convert('L') #resize the image to 28x28 and converts it to gray scale
    image = np.array(image)
    print(image.shape)
    # Predict
    prediction = model.predict(image[None, ...])  # Assuming single regression value
    confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
    return confidences

# Create Gradio interface
input_image = gr.Image()
output_text = gr.Textbox(label="Predicted Pokemon")
interface = gr.Interface(fn=predict_regression, 
                         inputs=input_image, 
                         outputs=gr.Label(),
                         examples=["images/Ditto.jpeg", "images/Golbat.jpeg", "images/Koffing.jpeg"],   
                         description="A simple mlp classification model for image classification using the mnist dataset.")
interface.launch()