File size: 1,654 Bytes
b5aa1fe
c434942
 
b5aa1fe
c434942
 
 
 
b5aa1fe
c434942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---

language: en
tags: question answering
license: apache-2.0
datasets: 
- squad
- batterydata/battery-device-data-qa
metrics: squad
---


# BatterySciBERT-uncased for QA 
**Language model:** batteryscibert-uncased
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD v1
**Eval data:** SQuAD v1
**Code:**  See [example](https://github.com/ShuHuang/batterybert) 
**Infrastructure**: 8x DGX A100
## Hyperparameters
```

batch_size = 32

n_epochs = 3

base_LM_model = "batteryscibert-uncased"

max_seq_len = 386

learning_rate = 2e-5

doc_stride=128

max_query_length=64

``` 
## Performance
Evaluated on the SQuAD v1.0 dev set.
```

"exact": 79.81,

"f1": 87.66,

```
Evaluated on the battery device dataset.
```

"precision": 66.65,

"recall": 85.29,

```
## Usage
### In Transformers
```python

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline



model_name = "batterydata/batteryscibert-uncased-squad-v1"

# a) Get predictions

nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)

QA_input = {

    'question': 'What is the electrolyte?',

    'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'

}

res = nlp(QA_input)

# b) Load model & tokenizer

model = AutoModelForQuestionAnswering.from_pretrained(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)

```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`

Jacqueline Cole: `jmc61 [at] cam.ac.uk`

## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement