File size: 12,115 Bytes
975da75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Finetuned-camem-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Finetuned-camem-ner

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1080
- Precision: 0.8445
- Recall: 0.8740
- F1: 0.8590
- Accuracy: 0.9793

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.2864        | 0.09  | 100   | 1.2891          | 0.0295    | 0.1206 | 0.0474 | 0.8750   |
| 0.8284        | 0.17  | 200   | 0.5688          | 0.0376    | 0.1252 | 0.0579 | 0.8888   |
| 0.374         | 0.26  | 300   | 0.2753          | 0.1477    | 0.2320 | 0.1805 | 0.9366   |
| 0.2215        | 0.35  | 400   | 0.1742          | 0.3205    | 0.3816 | 0.3484 | 0.9584   |
| 0.1447        | 0.43  | 500   | 0.1271          | 0.6077    | 0.7105 | 0.6551 | 0.9735   |
| 0.1183        | 0.52  | 600   | 0.1067          | 0.7066    | 0.7857 | 0.7440 | 0.9773   |
| 0.108         | 0.61  | 700   | 0.0983          | 0.7236    | 0.8071 | 0.7631 | 0.9779   |
| 0.0978        | 0.69  | 800   | 0.0880          | 0.7678    | 0.8224 | 0.7942 | 0.9789   |
| 0.0897        | 0.78  | 900   | 0.0908          | 0.7970    | 0.8432 | 0.8195 | 0.9797   |
| 0.0799        | 0.87  | 1000  | 0.0883          | 0.8052    | 0.8587 | 0.8311 | 0.9799   |
| 0.0868        | 0.95  | 1100  | 0.0832          | 0.8073    | 0.8622 | 0.8338 | 0.9801   |
| 0.0749        | 1.04  | 1200  | 0.0832          | 0.8138    | 0.8651 | 0.8387 | 0.9800   |
| 0.0765        | 1.13  | 1300  | 0.0844          | 0.8139    | 0.8689 | 0.8405 | 0.9800   |
| 0.0712        | 1.21  | 1400  | 0.0835          | 0.8262    | 0.8636 | 0.8445 | 0.9800   |
| 0.0678        | 1.3   | 1500  | 0.0838          | 0.8228    | 0.8687 | 0.8451 | 0.9801   |
| 0.0699        | 1.39  | 1600  | 0.0850          | 0.8212    | 0.8714 | 0.8455 | 0.9800   |
| 0.0731        | 1.47  | 1700  | 0.0809          | 0.8272    | 0.8709 | 0.8485 | 0.9800   |
| 0.0704        | 1.56  | 1800  | 0.0818          | 0.8400    | 0.8697 | 0.8546 | 0.9803   |
| 0.0749        | 1.65  | 1900  | 0.0820          | 0.8330    | 0.8726 | 0.8523 | 0.9802   |
| 0.0723        | 1.73  | 2000  | 0.0814          | 0.8423    | 0.8709 | 0.8563 | 0.9802   |
| 0.0737        | 1.82  | 2100  | 0.0814          | 0.8312    | 0.8737 | 0.8519 | 0.9801   |
| 0.073         | 1.91  | 2200  | 0.0821          | 0.8347    | 0.8769 | 0.8553 | 0.9799   |
| 0.0617        | 1.99  | 2300  | 0.0830          | 0.8375    | 0.8760 | 0.8563 | 0.9801   |
| 0.0607        | 2.08  | 2400  | 0.0863          | 0.8295    | 0.8803 | 0.8541 | 0.9803   |
| 0.0578        | 2.17  | 2500  | 0.0849          | 0.8365    | 0.8797 | 0.8575 | 0.9803   |
| 0.0546        | 2.25  | 2600  | 0.0854          | 0.8376    | 0.8785 | 0.8576 | 0.9802   |
| 0.0634        | 2.34  | 2700  | 0.0832          | 0.8375    | 0.8764 | 0.8565 | 0.9801   |
| 0.058         | 2.43  | 2800  | 0.0852          | 0.8405    | 0.8748 | 0.8573 | 0.9802   |
| 0.0616        | 2.51  | 2900  | 0.0851          | 0.8378    | 0.8796 | 0.8582 | 0.9800   |
| 0.0585        | 2.6   | 3000  | 0.0845          | 0.8434    | 0.8785 | 0.8606 | 0.9800   |
| 0.0542        | 2.69  | 3100  | 0.0847          | 0.8471    | 0.8773 | 0.8619 | 0.9801   |
| 0.0617        | 2.77  | 3200  | 0.0869          | 0.8396    | 0.8765 | 0.8577 | 0.9799   |
| 0.0634        | 2.86  | 3300  | 0.0828          | 0.8338    | 0.8773 | 0.8550 | 0.9796   |
| 0.0593        | 2.95  | 3400  | 0.0855          | 0.8360    | 0.8789 | 0.8569 | 0.9798   |
| 0.0486        | 3.03  | 3500  | 0.0888          | 0.8439    | 0.8781 | 0.8606 | 0.9801   |
| 0.0549        | 3.12  | 3600  | 0.0886          | 0.8444    | 0.8793 | 0.8615 | 0.9798   |
| 0.0499        | 3.21  | 3700  | 0.0925          | 0.8462    | 0.8771 | 0.8613 | 0.9800   |
| 0.0484        | 3.29  | 3800  | 0.0913          | 0.8449    | 0.8773 | 0.8608 | 0.9798   |
| 0.049         | 3.38  | 3900  | 0.0927          | 0.8409    | 0.8774 | 0.8588 | 0.9796   |
| 0.05          | 3.47  | 4000  | 0.0900          | 0.8468    | 0.8780 | 0.8621 | 0.9800   |
| 0.0456        | 3.55  | 4100  | 0.0904          | 0.8464    | 0.8787 | 0.8623 | 0.9801   |
| 0.051         | 3.64  | 4200  | 0.0911          | 0.8411    | 0.8778 | 0.8591 | 0.9798   |
| 0.0507        | 3.73  | 4300  | 0.0921          | 0.8457    | 0.8768 | 0.8610 | 0.9797   |
| 0.0526        | 3.81  | 4400  | 0.0888          | 0.8453    | 0.8774 | 0.8610 | 0.9801   |
| 0.0494        | 3.9   | 4500  | 0.0892          | 0.8440    | 0.8785 | 0.8609 | 0.9800   |
| 0.0513        | 3.99  | 4600  | 0.0901          | 0.8392    | 0.8811 | 0.8597 | 0.9796   |
| 0.0479        | 4.07  | 4700  | 0.0914          | 0.8461    | 0.8781 | 0.8618 | 0.9798   |
| 0.0408        | 4.16  | 4800  | 0.0938          | 0.8518    | 0.8724 | 0.8620 | 0.9797   |
| 0.0446        | 4.25  | 4900  | 0.0926          | 0.8475    | 0.8766 | 0.8618 | 0.9797   |
| 0.0425        | 4.33  | 5000  | 0.0927          | 0.8434    | 0.8762 | 0.8595 | 0.9795   |
| 0.0428        | 4.42  | 5100  | 0.0966          | 0.8473    | 0.8788 | 0.8628 | 0.9799   |
| 0.045         | 4.51  | 5200  | 0.0941          | 0.8428    | 0.8787 | 0.8604 | 0.9795   |
| 0.0472        | 4.59  | 5300  | 0.0894          | 0.8436    | 0.8757 | 0.8593 | 0.9794   |
| 0.0436        | 4.68  | 5400  | 0.0961          | 0.8464    | 0.8755 | 0.8607 | 0.9800   |
| 0.0466        | 4.77  | 5500  | 0.0947          | 0.8451    | 0.8767 | 0.8606 | 0.9797   |
| 0.0438        | 4.85  | 5600  | 0.0951          | 0.8398    | 0.8779 | 0.8584 | 0.9795   |
| 0.0444        | 4.94  | 5700  | 0.0965          | 0.8431    | 0.8767 | 0.8596 | 0.9797   |
| 0.0444        | 5.03  | 5800  | 0.0929          | 0.8421    | 0.8780 | 0.8597 | 0.9798   |
| 0.0382        | 5.11  | 5900  | 0.0983          | 0.8460    | 0.8772 | 0.8613 | 0.9796   |
| 0.0388        | 5.2   | 6000  | 0.0979          | 0.8406    | 0.8806 | 0.8601 | 0.9797   |
| 0.0434        | 5.29  | 6100  | 0.0963          | 0.8463    | 0.8783 | 0.8620 | 0.9795   |
| 0.038         | 5.37  | 6200  | 0.0977          | 0.8457    | 0.8774 | 0.8612 | 0.9795   |
| 0.0406        | 5.46  | 6300  | 0.0970          | 0.8454    | 0.8780 | 0.8614 | 0.9796   |
| 0.0415        | 5.55  | 6400  | 0.0971          | 0.8442    | 0.8769 | 0.8602 | 0.9795   |
| 0.037         | 5.63  | 6500  | 0.1001          | 0.8448    | 0.8771 | 0.8607 | 0.9794   |
| 0.0375        | 5.72  | 6600  | 0.1000          | 0.8448    | 0.8744 | 0.8593 | 0.9794   |
| 0.0414        | 5.81  | 6700  | 0.0955          | 0.8478    | 0.8745 | 0.8609 | 0.9794   |
| 0.0422        | 5.89  | 6800  | 0.0966          | 0.8482    | 0.8746 | 0.8612 | 0.9794   |
| 0.04          | 5.98  | 6900  | 0.0995          | 0.8410    | 0.8776 | 0.8589 | 0.9795   |
| 0.0367        | 6.07  | 7000  | 0.1008          | 0.8460    | 0.8757 | 0.8606 | 0.9795   |
| 0.0385        | 6.15  | 7100  | 0.1025          | 0.8428    | 0.8766 | 0.8593 | 0.9793   |
| 0.039         | 6.24  | 7200  | 0.1003          | 0.8424    | 0.8766 | 0.8592 | 0.9794   |
| 0.0344        | 6.33  | 7300  | 0.1047          | 0.8421    | 0.8784 | 0.8599 | 0.9794   |
| 0.0346        | 6.41  | 7400  | 0.1022          | 0.8419    | 0.8780 | 0.8596 | 0.9793   |
| 0.0379        | 6.5   | 7500  | 0.0978          | 0.8467    | 0.8772 | 0.8617 | 0.9797   |
| 0.0358        | 6.59  | 7600  | 0.1018          | 0.8446    | 0.8767 | 0.8603 | 0.9792   |
| 0.0363        | 6.67  | 7700  | 0.1001          | 0.8432    | 0.8768 | 0.8597 | 0.9792   |
| 0.0378        | 6.76  | 7800  | 0.1030          | 0.8456    | 0.8767 | 0.8609 | 0.9794   |
| 0.0403        | 6.85  | 7900  | 0.0971          | 0.8418    | 0.8761 | 0.8586 | 0.9793   |
| 0.0352        | 6.93  | 8000  | 0.1035          | 0.8456    | 0.8757 | 0.8604 | 0.9793   |
| 0.0332        | 7.02  | 8100  | 0.1021          | 0.8450    | 0.8755 | 0.8600 | 0.9792   |
| 0.0371        | 7.11  | 8200  | 0.1032          | 0.8478    | 0.8746 | 0.8610 | 0.9794   |
| 0.034         | 7.19  | 8300  | 0.1037          | 0.8467    | 0.8738 | 0.8600 | 0.9794   |
| 0.033         | 7.28  | 8400  | 0.1037          | 0.8457    | 0.8747 | 0.8599 | 0.9793   |
| 0.0329        | 7.37  | 8500  | 0.1048          | 0.8459    | 0.8751 | 0.8602 | 0.9791   |
| 0.0317        | 7.45  | 8600  | 0.1074          | 0.8441    | 0.8757 | 0.8596 | 0.9792   |
| 0.0319        | 7.54  | 8700  | 0.1056          | 0.8437    | 0.8753 | 0.8592 | 0.9792   |
| 0.0335        | 7.63  | 8800  | 0.1034          | 0.8446    | 0.8736 | 0.8589 | 0.9793   |
| 0.0346        | 7.71  | 8900  | 0.1069          | 0.8461    | 0.8735 | 0.8596 | 0.9792   |
| 0.0342        | 7.8   | 9000  | 0.1031          | 0.8427    | 0.8757 | 0.8589 | 0.9793   |
| 0.0371        | 7.89  | 9100  | 0.1024          | 0.8438    | 0.8747 | 0.8590 | 0.9793   |
| 0.0384        | 7.97  | 9200  | 0.1032          | 0.8472    | 0.8746 | 0.8607 | 0.9795   |
| 0.0308        | 8.06  | 9300  | 0.1070          | 0.8449    | 0.8753 | 0.8598 | 0.9793   |
| 0.0318        | 8.15  | 9400  | 0.1070          | 0.8459    | 0.8738 | 0.8596 | 0.9794   |
| 0.0285        | 8.23  | 9500  | 0.1077          | 0.8474    | 0.8751 | 0.8610 | 0.9794   |
| 0.0334        | 8.32  | 9600  | 0.1066          | 0.8443    | 0.8757 | 0.8598 | 0.9793   |
| 0.0332        | 8.41  | 9700  | 0.1055          | 0.8462    | 0.8747 | 0.8602 | 0.9793   |
| 0.0341        | 8.49  | 9800  | 0.1056          | 0.8442    | 0.8749 | 0.8593 | 0.9793   |
| 0.0304        | 8.58  | 9900  | 0.1066          | 0.8447    | 0.8729 | 0.8586 | 0.9792   |
| 0.0353        | 8.67  | 10000 | 0.1057          | 0.8446    | 0.8741 | 0.8591 | 0.9792   |
| 0.0348        | 8.75  | 10100 | 0.1051          | 0.8443    | 0.8736 | 0.8587 | 0.9792   |
| 0.0326        | 8.84  | 10200 | 0.1047          | 0.8443    | 0.8757 | 0.8597 | 0.9793   |
| 0.0332        | 8.93  | 10300 | 0.1044          | 0.8461    | 0.8732 | 0.8594 | 0.9793   |
| 0.0328        | 9.01  | 10400 | 0.1053          | 0.8438    | 0.8744 | 0.8588 | 0.9792   |
| 0.0318        | 9.1   | 10500 | 0.1072          | 0.8415    | 0.8746 | 0.8577 | 0.9793   |
| 0.0296        | 9.19  | 10600 | 0.1084          | 0.8431    | 0.8743 | 0.8584 | 0.9793   |
| 0.0324        | 9.27  | 10700 | 0.1074          | 0.8448    | 0.8746 | 0.8594 | 0.9794   |
| 0.0326        | 9.36  | 10800 | 0.1080          | 0.8439    | 0.8752 | 0.8593 | 0.9793   |
| 0.0288        | 9.45  | 10900 | 0.1084          | 0.8451    | 0.8739 | 0.8593 | 0.9794   |
| 0.0314        | 9.53  | 11000 | 0.1082          | 0.8450    | 0.8746 | 0.8596 | 0.9794   |
| 0.0292        | 9.62  | 11100 | 0.1084          | 0.8446    | 0.8740 | 0.8590 | 0.9794   |
| 0.0328        | 9.71  | 11200 | 0.1080          | 0.8447    | 0.8741 | 0.8591 | 0.9794   |
| 0.0313        | 9.79  | 11300 | 0.1080          | 0.8439    | 0.8747 | 0.8590 | 0.9794   |
| 0.0295        | 9.88  | 11400 | 0.1080          | 0.8445    | 0.8739 | 0.8589 | 0.9793   |
| 0.0316        | 9.97  | 11500 | 0.1080          | 0.8445    | 0.8740 | 0.8590 | 0.9793   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2