File size: 5,018 Bytes
5a5000d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9579d99
 
 
 
 
5a5000d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9579d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5000d
 
 
 
 
9579d99
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test

This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2434
- Precision: 0.9144
- Recall: 0.9105
- F1: 0.9124
- Accuracy: 0.9725

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.7937  | 100  | 0.1878          | 0.8406    | 0.8761 | 0.8580 | 0.9542   |
| No log        | 1.5873  | 200  | 0.1337          | 0.8943    | 0.8864 | 0.8903 | 0.9650   |
| No log        | 2.3810  | 300  | 0.1259          | 0.9020    | 0.9214 | 0.9116 | 0.9716   |
| No log        | 3.1746  | 400  | 0.1317          | 0.9100    | 0.9181 | 0.9140 | 0.9730   |
| 0.2107        | 3.9683  | 500  | 0.1159          | 0.9144    | 0.9065 | 0.9104 | 0.9710   |
| 0.2107        | 4.7619  | 600  | 0.1169          | 0.9147    | 0.9072 | 0.9109 | 0.9715   |
| 0.2107        | 5.5556  | 700  | 0.1240          | 0.9025    | 0.9144 | 0.9084 | 0.9712   |
| 0.2107        | 6.3492  | 800  | 0.1351          | 0.9160    | 0.9118 | 0.9139 | 0.9727   |
| 0.2107        | 7.1429  | 900  | 0.1469          | 0.9207    | 0.9055 | 0.9131 | 0.9722   |
| 0.0518        | 7.9365  | 1000 | 0.1333          | 0.9053    | 0.9158 | 0.9105 | 0.9717   |
| 0.0518        | 8.7302  | 1100 | 0.1367          | 0.9119    | 0.9167 | 0.9143 | 0.9724   |
| 0.0518        | 9.5238  | 1200 | 0.1412          | 0.9057    | 0.9134 | 0.9095 | 0.9712   |
| 0.0518        | 10.3175 | 1300 | 0.1666          | 0.9203    | 0.9158 | 0.9180 | 0.9740   |
| 0.0518        | 11.1111 | 1400 | 0.1610          | 0.9050    | 0.9062 | 0.9056 | 0.9707   |
| 0.0316        | 11.9048 | 1500 | 0.1677          | 0.9175    | 0.9111 | 0.9143 | 0.9720   |
| 0.0316        | 12.6984 | 1600 | 0.1838          | 0.9097    | 0.9052 | 0.9074 | 0.9715   |
| 0.0316        | 13.4921 | 1700 | 0.1622          | 0.9182    | 0.9082 | 0.9131 | 0.9725   |
| 0.0316        | 14.2857 | 1800 | 0.1855          | 0.9161    | 0.9092 | 0.9126 | 0.9725   |
| 0.0316        | 15.0794 | 1900 | 0.1739          | 0.9078    | 0.9171 | 0.9124 | 0.9725   |
| 0.0174        | 15.8730 | 2000 | 0.1902          | 0.9167    | 0.9167 | 0.9167 | 0.9734   |
| 0.0174        | 16.6667 | 2100 | 0.1729          | 0.9207    | 0.9171 | 0.9189 | 0.9739   |
| 0.0174        | 17.4603 | 2200 | 0.2083          | 0.9147    | 0.9171 | 0.9159 | 0.9734   |
| 0.0174        | 18.2540 | 2300 | 0.2233          | 0.9108    | 0.9177 | 0.9143 | 0.9724   |
| 0.0174        | 19.0476 | 2400 | 0.2165          | 0.9201    | 0.9134 | 0.9168 | 0.9730   |
| 0.0085        | 19.8413 | 2500 | 0.2138          | 0.9117    | 0.9111 | 0.9114 | 0.9721   |
| 0.0085        | 20.6349 | 2600 | 0.2109          | 0.9150    | 0.9108 | 0.9129 | 0.9725   |
| 0.0085        | 21.4286 | 2700 | 0.2118          | 0.9216    | 0.9167 | 0.9192 | 0.9742   |
| 0.0085        | 22.2222 | 2800 | 0.2287          | 0.9184    | 0.9184 | 0.9184 | 0.9742   |
| 0.0085        | 23.0159 | 2900 | 0.2350          | 0.9118    | 0.9085 | 0.9101 | 0.9719   |
| 0.0043        | 23.8095 | 3000 | 0.2406          | 0.9109    | 0.9158 | 0.9133 | 0.9727   |
| 0.0043        | 24.6032 | 3100 | 0.2480          | 0.9105    | 0.9072 | 0.9088 | 0.9715   |
| 0.0043        | 25.3968 | 3200 | 0.2430          | 0.9112    | 0.9055 | 0.9084 | 0.9714   |
| 0.0043        | 26.1905 | 3300 | 0.2396          | 0.9092    | 0.9068 | 0.9080 | 0.9712   |
| 0.0043        | 26.9841 | 3400 | 0.2386          | 0.9152    | 0.9164 | 0.9158 | 0.9732   |
| 0.0026        | 27.7778 | 3500 | 0.2417          | 0.9123    | 0.9111 | 0.9117 | 0.9720   |
| 0.0026        | 28.5714 | 3600 | 0.2433          | 0.9136    | 0.9085 | 0.9110 | 0.9721   |
| 0.0026        | 29.3651 | 3700 | 0.2434          | 0.9144    | 0.9105 | 0.9124 | 0.9725   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1