100epoch_test / README.md
bashyaldhiraj2067's picture
End of training
2d69c8c verified
metadata
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: 100epoch_test
    results: []

100epoch_test

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3027
  • Precision: 0.9074
  • Recall: 0.9128
  • F1: 0.9101
  • Accuracy: 0.9717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.7937 100 0.1798 0.8560 0.8877 0.8716 0.9565
No log 1.5873 200 0.1305 0.8982 0.9032 0.9007 0.9679
No log 2.3810 300 0.1216 0.9019 0.9290 0.9152 0.9719
No log 3.1746 400 0.1334 0.8883 0.9062 0.8971 0.9676
0.2125 3.9683 500 0.1163 0.9103 0.9191 0.9147 0.9726
0.2125 4.7619 600 0.1171 0.9172 0.9002 0.9086 0.9712
0.2125 5.5556 700 0.1343 0.8646 0.9006 0.8822 0.9635
0.2125 6.3492 800 0.1397 0.9085 0.8956 0.9020 0.9690
0.2125 7.1429 900 0.1437 0.9166 0.8969 0.9067 0.9704
0.0606 7.9365 1000 0.1241 0.9075 0.9138 0.9106 0.9716
0.0606 8.7302 1100 0.1372 0.9112 0.9088 0.9100 0.9710
0.0606 9.5238 1200 0.1403 0.9151 0.9154 0.9153 0.9735
0.0606 10.3175 1300 0.1783 0.9169 0.9039 0.9103 0.9720
0.0606 11.1111 1400 0.1517 0.9148 0.9151 0.9149 0.9735
0.0374 11.9048 1500 0.1677 0.9148 0.9042 0.9095 0.9712
0.0374 12.6984 1600 0.1679 0.9178 0.9006 0.9091 0.9711
0.0374 13.4921 1700 0.1569 0.9178 0.8996 0.9086 0.9712
0.0374 14.2857 1800 0.2076 0.9066 0.8916 0.8991 0.9677
0.0374 15.0794 1900 0.1684 0.9001 0.9201 0.9100 0.9712
0.0231 15.8730 2000 0.1945 0.9163 0.9108 0.9135 0.9725
0.0231 16.6667 2100 0.1707 0.9099 0.9072 0.9085 0.9715
0.0231 17.4603 2200 0.2078 0.9167 0.9019 0.9092 0.9715
0.0231 18.2540 2300 0.2086 0.9068 0.9032 0.9050 0.9700
0.0231 19.0476 2400 0.2082 0.9110 0.8996 0.9053 0.9705
0.0155 19.8413 2500 0.1908 0.9109 0.9121 0.9115 0.9719
0.0155 20.6349 2600 0.1991 0.9094 0.9118 0.9106 0.9712
0.0155 21.4286 2700 0.2008 0.9053 0.9065 0.9059 0.9702
0.0155 22.2222 2800 0.2344 0.9097 0.9125 0.9111 0.9720
0.0155 23.0159 2900 0.2186 0.9076 0.9115 0.9095 0.9717
0.0097 23.8095 3000 0.2208 0.9045 0.9141 0.9093 0.9716
0.0097 24.6032 3100 0.1988 0.9033 0.9039 0.9036 0.9700
0.0097 25.3968 3200 0.2291 0.9197 0.9009 0.9102 0.9712
0.0097 26.1905 3300 0.2402 0.9011 0.9025 0.9018 0.9697
0.0097 26.9841 3400 0.2418 0.9095 0.9131 0.9113 0.9715
0.0066 27.7778 3500 0.2149 0.8997 0.9065 0.9031 0.9697
0.0066 28.5714 3600 0.2474 0.9016 0.9022 0.9019 0.9696
0.0066 29.3651 3700 0.2362 0.9143 0.9055 0.9099 0.9720
0.0066 30.1587 3800 0.2374 0.9058 0.9184 0.9121 0.9719
0.0066 30.9524 3900 0.2516 0.9032 0.9006 0.9019 0.9692
0.0048 31.7460 4000 0.2251 0.9038 0.9092 0.9065 0.9710
0.0048 32.5397 4100 0.2488 0.9062 0.9098 0.9080 0.9709
0.0048 33.3333 4200 0.2412 0.9034 0.9088 0.9061 0.9710
0.0048 34.1270 4300 0.2421 0.9041 0.9032 0.9037 0.9697
0.0048 34.9206 4400 0.2599 0.9038 0.9062 0.9050 0.9704
0.0042 35.7143 4500 0.2372 0.9002 0.9144 0.9072 0.9706
0.0042 36.5079 4600 0.2545 0.9020 0.9035 0.9028 0.9696
0.0042 37.3016 4700 0.2629 0.9034 0.8963 0.8998 0.9684
0.0042 38.0952 4800 0.2407 0.9069 0.9078 0.9074 0.9706
0.0042 38.8889 4900 0.2604 0.9115 0.9019 0.9067 0.9706
0.0039 39.6825 5000 0.2657 0.9091 0.9052 0.9071 0.9704
0.0039 40.4762 5100 0.2615 0.8995 0.9049 0.9022 0.9690
0.0039 41.2698 5200 0.2631 0.9115 0.9016 0.9065 0.9711
0.0039 42.0635 5300 0.2645 0.9087 0.9105 0.9096 0.9717
0.0039 42.8571 5400 0.2736 0.9027 0.9042 0.9034 0.9701
0.0031 43.6508 5500 0.2491 0.9064 0.9052 0.9058 0.9702
0.0031 44.4444 5600 0.2556 0.9110 0.9095 0.9102 0.9712
0.0031 45.2381 5700 0.2768 0.9009 0.9009 0.9009 0.9689
0.0031 46.0317 5800 0.2580 0.9054 0.9045 0.9050 0.9702
0.0031 46.8254 5900 0.2524 0.9047 0.9068 0.9058 0.9709
0.003 47.6190 6000 0.2652 0.9083 0.9101 0.9092 0.9717
0.003 48.4127 6100 0.2741 0.9082 0.9148 0.9115 0.9717
0.003 49.2063 6200 0.2835 0.9065 0.9062 0.9063 0.9706
0.003 50.0 6300 0.2906 0.9011 0.9058 0.9035 0.9699
0.003 50.7937 6400 0.2738 0.9060 0.9101 0.9080 0.9709
0.0019 51.5873 6500 0.2730 0.9088 0.9085 0.9086 0.9715
0.0019 52.3810 6600 0.2718 0.9042 0.9012 0.9027 0.9696
0.0019 53.1746 6700 0.2862 0.9101 0.9101 0.9101 0.9712
0.0019 53.9683 6800 0.2816 0.8985 0.9095 0.9040 0.9695
0.0019 54.7619 6900 0.2931 0.9051 0.9016 0.9033 0.9697
0.0017 55.5556 7000 0.2644 0.9082 0.9082 0.9082 0.9710
0.0017 56.3492 7100 0.2815 0.9089 0.9068 0.9079 0.9715
0.0017 57.1429 7200 0.2566 0.9044 0.9068 0.9056 0.9709
0.0017 57.9365 7300 0.2709 0.9130 0.9088 0.9109 0.9722
0.0017 58.7302 7400 0.2699 0.9089 0.9092 0.9090 0.9715
0.0016 59.5238 7500 0.2742 0.9084 0.9072 0.9078 0.9707
0.0016 60.3175 7600 0.2549 0.9062 0.9101 0.9082 0.9714
0.0016 61.1111 7700 0.2714 0.9068 0.8963 0.9015 0.9695
0.0016 61.9048 7800 0.2801 0.9098 0.9062 0.9080 0.9715
0.0016 62.6984 7900 0.2818 0.9006 0.9072 0.9039 0.9705
0.0013 63.4921 8000 0.2923 0.9053 0.9068 0.9061 0.9711
0.0013 64.2857 8100 0.2944 0.9068 0.8900 0.8983 0.9686
0.0013 65.0794 8200 0.2941 0.9033 0.9075 0.9054 0.9706
0.0013 65.8730 8300 0.2801 0.9075 0.9006 0.9040 0.9699
0.0013 66.6667 8400 0.2822 0.9098 0.9131 0.9115 0.9722
0.0008 67.4603 8500 0.3013 0.9066 0.9016 0.9041 0.9701
0.0008 68.2540 8600 0.2670 0.9040 0.9144 0.9092 0.9719
0.0008 69.0476 8700 0.2941 0.9054 0.9012 0.9033 0.9701
0.0008 69.8413 8800 0.2911 0.9086 0.9065 0.9076 0.9717
0.0008 70.6349 8900 0.2783 0.9123 0.9111 0.9117 0.9726
0.0007 71.4286 9000 0.2877 0.9122 0.9022 0.9072 0.9715
0.0007 72.2222 9100 0.3021 0.9019 0.9138 0.9078 0.9706
0.0007 73.0159 9200 0.2869 0.9094 0.9118 0.9106 0.9721
0.0007 73.8095 9300 0.2928 0.9041 0.9095 0.9068 0.9706
0.0007 74.6032 9400 0.2896 0.9088 0.9088 0.9088 0.9716
0.0007 75.3968 9500 0.3008 0.9073 0.9118 0.9095 0.9716
0.0007 76.1905 9600 0.3019 0.9067 0.9082 0.9074 0.9710
0.0007 76.9841 9700 0.2924 0.9073 0.9148 0.9110 0.9717
0.0007 77.7778 9800 0.2856 0.9117 0.9138 0.9127 0.9726
0.0007 78.5714 9900 0.2924 0.9098 0.9098 0.9098 0.9719
0.0004 79.3651 10000 0.3100 0.9047 0.9121 0.9084 0.9715
0.0004 80.1587 10100 0.3055 0.9100 0.9082 0.9091 0.9719
0.0004 80.9524 10200 0.2990 0.9103 0.9125 0.9114 0.9725
0.0004 81.7460 10300 0.2980 0.9099 0.9039 0.9069 0.9714
0.0004 82.5397 10400 0.2954 0.9095 0.9128 0.9111 0.9724
0.0003 83.3333 10500 0.2993 0.9092 0.9125 0.9108 0.9722
0.0003 84.1270 10600 0.3036 0.9079 0.9118 0.9098 0.9720
0.0003 84.9206 10700 0.2919 0.9088 0.9121 0.9105 0.9722
0.0003 85.7143 10800 0.2948 0.9075 0.9105 0.9090 0.9719
0.0003 86.5079 10900 0.3037 0.9081 0.9078 0.9080 0.9717
0.0003 87.3016 11000 0.3039 0.9086 0.9125 0.9105 0.9724
0.0003 88.0952 11100 0.3019 0.9088 0.9115 0.9101 0.9721
0.0003 88.8889 11200 0.3064 0.9108 0.9111 0.9110 0.9724
0.0003 89.6825 11300 0.3017 0.9088 0.9115 0.9101 0.9721
0.0003 90.4762 11400 0.2813 0.9074 0.9098 0.9086 0.9717
0.0005 91.2698 11500 0.2895 0.9081 0.9078 0.9080 0.9716
0.0005 92.0635 11600 0.2950 0.9065 0.9098 0.9082 0.9716
0.0005 92.8571 11700 0.2880 0.9074 0.9134 0.9104 0.9720
0.0005 93.6508 11800 0.2947 0.9066 0.9134 0.9100 0.9717
0.0005 94.4444 11900 0.3003 0.9050 0.9068 0.9059 0.9706
0.0002 95.2381 12000 0.3018 0.9064 0.9115 0.9089 0.9714
0.0002 96.0317 12100 0.3008 0.9071 0.9131 0.9101 0.9717
0.0002 96.8254 12200 0.3011 0.9071 0.9131 0.9101 0.9717
0.0002 97.6190 12300 0.3007 0.9077 0.9134 0.9106 0.9719
0.0002 98.4127 12400 0.3017 0.9077 0.9134 0.9106 0.9719
0.0002 99.2063 12500 0.3024 0.9074 0.9128 0.9101 0.9717
0.0002 100.0 12600 0.3027 0.9074 0.9128 0.9101 0.9717

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1