File size: 13,531 Bytes
2d69c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: 100epoch_test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 100epoch_test

This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3027
- Precision: 0.9074
- Recall: 0.9128
- F1: 0.9101
- Accuracy: 0.9717

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.7937  | 100   | 0.1798          | 0.8560    | 0.8877 | 0.8716 | 0.9565   |
| No log        | 1.5873  | 200   | 0.1305          | 0.8982    | 0.9032 | 0.9007 | 0.9679   |
| No log        | 2.3810  | 300   | 0.1216          | 0.9019    | 0.9290 | 0.9152 | 0.9719   |
| No log        | 3.1746  | 400   | 0.1334          | 0.8883    | 0.9062 | 0.8971 | 0.9676   |
| 0.2125        | 3.9683  | 500   | 0.1163          | 0.9103    | 0.9191 | 0.9147 | 0.9726   |
| 0.2125        | 4.7619  | 600   | 0.1171          | 0.9172    | 0.9002 | 0.9086 | 0.9712   |
| 0.2125        | 5.5556  | 700   | 0.1343          | 0.8646    | 0.9006 | 0.8822 | 0.9635   |
| 0.2125        | 6.3492  | 800   | 0.1397          | 0.9085    | 0.8956 | 0.9020 | 0.9690   |
| 0.2125        | 7.1429  | 900   | 0.1437          | 0.9166    | 0.8969 | 0.9067 | 0.9704   |
| 0.0606        | 7.9365  | 1000  | 0.1241          | 0.9075    | 0.9138 | 0.9106 | 0.9716   |
| 0.0606        | 8.7302  | 1100  | 0.1372          | 0.9112    | 0.9088 | 0.9100 | 0.9710   |
| 0.0606        | 9.5238  | 1200  | 0.1403          | 0.9151    | 0.9154 | 0.9153 | 0.9735   |
| 0.0606        | 10.3175 | 1300  | 0.1783          | 0.9169    | 0.9039 | 0.9103 | 0.9720   |
| 0.0606        | 11.1111 | 1400  | 0.1517          | 0.9148    | 0.9151 | 0.9149 | 0.9735   |
| 0.0374        | 11.9048 | 1500  | 0.1677          | 0.9148    | 0.9042 | 0.9095 | 0.9712   |
| 0.0374        | 12.6984 | 1600  | 0.1679          | 0.9178    | 0.9006 | 0.9091 | 0.9711   |
| 0.0374        | 13.4921 | 1700  | 0.1569          | 0.9178    | 0.8996 | 0.9086 | 0.9712   |
| 0.0374        | 14.2857 | 1800  | 0.2076          | 0.9066    | 0.8916 | 0.8991 | 0.9677   |
| 0.0374        | 15.0794 | 1900  | 0.1684          | 0.9001    | 0.9201 | 0.9100 | 0.9712   |
| 0.0231        | 15.8730 | 2000  | 0.1945          | 0.9163    | 0.9108 | 0.9135 | 0.9725   |
| 0.0231        | 16.6667 | 2100  | 0.1707          | 0.9099    | 0.9072 | 0.9085 | 0.9715   |
| 0.0231        | 17.4603 | 2200  | 0.2078          | 0.9167    | 0.9019 | 0.9092 | 0.9715   |
| 0.0231        | 18.2540 | 2300  | 0.2086          | 0.9068    | 0.9032 | 0.9050 | 0.9700   |
| 0.0231        | 19.0476 | 2400  | 0.2082          | 0.9110    | 0.8996 | 0.9053 | 0.9705   |
| 0.0155        | 19.8413 | 2500  | 0.1908          | 0.9109    | 0.9121 | 0.9115 | 0.9719   |
| 0.0155        | 20.6349 | 2600  | 0.1991          | 0.9094    | 0.9118 | 0.9106 | 0.9712   |
| 0.0155        | 21.4286 | 2700  | 0.2008          | 0.9053    | 0.9065 | 0.9059 | 0.9702   |
| 0.0155        | 22.2222 | 2800  | 0.2344          | 0.9097    | 0.9125 | 0.9111 | 0.9720   |
| 0.0155        | 23.0159 | 2900  | 0.2186          | 0.9076    | 0.9115 | 0.9095 | 0.9717   |
| 0.0097        | 23.8095 | 3000  | 0.2208          | 0.9045    | 0.9141 | 0.9093 | 0.9716   |
| 0.0097        | 24.6032 | 3100  | 0.1988          | 0.9033    | 0.9039 | 0.9036 | 0.9700   |
| 0.0097        | 25.3968 | 3200  | 0.2291          | 0.9197    | 0.9009 | 0.9102 | 0.9712   |
| 0.0097        | 26.1905 | 3300  | 0.2402          | 0.9011    | 0.9025 | 0.9018 | 0.9697   |
| 0.0097        | 26.9841 | 3400  | 0.2418          | 0.9095    | 0.9131 | 0.9113 | 0.9715   |
| 0.0066        | 27.7778 | 3500  | 0.2149          | 0.8997    | 0.9065 | 0.9031 | 0.9697   |
| 0.0066        | 28.5714 | 3600  | 0.2474          | 0.9016    | 0.9022 | 0.9019 | 0.9696   |
| 0.0066        | 29.3651 | 3700  | 0.2362          | 0.9143    | 0.9055 | 0.9099 | 0.9720   |
| 0.0066        | 30.1587 | 3800  | 0.2374          | 0.9058    | 0.9184 | 0.9121 | 0.9719   |
| 0.0066        | 30.9524 | 3900  | 0.2516          | 0.9032    | 0.9006 | 0.9019 | 0.9692   |
| 0.0048        | 31.7460 | 4000  | 0.2251          | 0.9038    | 0.9092 | 0.9065 | 0.9710   |
| 0.0048        | 32.5397 | 4100  | 0.2488          | 0.9062    | 0.9098 | 0.9080 | 0.9709   |
| 0.0048        | 33.3333 | 4200  | 0.2412          | 0.9034    | 0.9088 | 0.9061 | 0.9710   |
| 0.0048        | 34.1270 | 4300  | 0.2421          | 0.9041    | 0.9032 | 0.9037 | 0.9697   |
| 0.0048        | 34.9206 | 4400  | 0.2599          | 0.9038    | 0.9062 | 0.9050 | 0.9704   |
| 0.0042        | 35.7143 | 4500  | 0.2372          | 0.9002    | 0.9144 | 0.9072 | 0.9706   |
| 0.0042        | 36.5079 | 4600  | 0.2545          | 0.9020    | 0.9035 | 0.9028 | 0.9696   |
| 0.0042        | 37.3016 | 4700  | 0.2629          | 0.9034    | 0.8963 | 0.8998 | 0.9684   |
| 0.0042        | 38.0952 | 4800  | 0.2407          | 0.9069    | 0.9078 | 0.9074 | 0.9706   |
| 0.0042        | 38.8889 | 4900  | 0.2604          | 0.9115    | 0.9019 | 0.9067 | 0.9706   |
| 0.0039        | 39.6825 | 5000  | 0.2657          | 0.9091    | 0.9052 | 0.9071 | 0.9704   |
| 0.0039        | 40.4762 | 5100  | 0.2615          | 0.8995    | 0.9049 | 0.9022 | 0.9690   |
| 0.0039        | 41.2698 | 5200  | 0.2631          | 0.9115    | 0.9016 | 0.9065 | 0.9711   |
| 0.0039        | 42.0635 | 5300  | 0.2645          | 0.9087    | 0.9105 | 0.9096 | 0.9717   |
| 0.0039        | 42.8571 | 5400  | 0.2736          | 0.9027    | 0.9042 | 0.9034 | 0.9701   |
| 0.0031        | 43.6508 | 5500  | 0.2491          | 0.9064    | 0.9052 | 0.9058 | 0.9702   |
| 0.0031        | 44.4444 | 5600  | 0.2556          | 0.9110    | 0.9095 | 0.9102 | 0.9712   |
| 0.0031        | 45.2381 | 5700  | 0.2768          | 0.9009    | 0.9009 | 0.9009 | 0.9689   |
| 0.0031        | 46.0317 | 5800  | 0.2580          | 0.9054    | 0.9045 | 0.9050 | 0.9702   |
| 0.0031        | 46.8254 | 5900  | 0.2524          | 0.9047    | 0.9068 | 0.9058 | 0.9709   |
| 0.003         | 47.6190 | 6000  | 0.2652          | 0.9083    | 0.9101 | 0.9092 | 0.9717   |
| 0.003         | 48.4127 | 6100  | 0.2741          | 0.9082    | 0.9148 | 0.9115 | 0.9717   |
| 0.003         | 49.2063 | 6200  | 0.2835          | 0.9065    | 0.9062 | 0.9063 | 0.9706   |
| 0.003         | 50.0    | 6300  | 0.2906          | 0.9011    | 0.9058 | 0.9035 | 0.9699   |
| 0.003         | 50.7937 | 6400  | 0.2738          | 0.9060    | 0.9101 | 0.9080 | 0.9709   |
| 0.0019        | 51.5873 | 6500  | 0.2730          | 0.9088    | 0.9085 | 0.9086 | 0.9715   |
| 0.0019        | 52.3810 | 6600  | 0.2718          | 0.9042    | 0.9012 | 0.9027 | 0.9696   |
| 0.0019        | 53.1746 | 6700  | 0.2862          | 0.9101    | 0.9101 | 0.9101 | 0.9712   |
| 0.0019        | 53.9683 | 6800  | 0.2816          | 0.8985    | 0.9095 | 0.9040 | 0.9695   |
| 0.0019        | 54.7619 | 6900  | 0.2931          | 0.9051    | 0.9016 | 0.9033 | 0.9697   |
| 0.0017        | 55.5556 | 7000  | 0.2644          | 0.9082    | 0.9082 | 0.9082 | 0.9710   |
| 0.0017        | 56.3492 | 7100  | 0.2815          | 0.9089    | 0.9068 | 0.9079 | 0.9715   |
| 0.0017        | 57.1429 | 7200  | 0.2566          | 0.9044    | 0.9068 | 0.9056 | 0.9709   |
| 0.0017        | 57.9365 | 7300  | 0.2709          | 0.9130    | 0.9088 | 0.9109 | 0.9722   |
| 0.0017        | 58.7302 | 7400  | 0.2699          | 0.9089    | 0.9092 | 0.9090 | 0.9715   |
| 0.0016        | 59.5238 | 7500  | 0.2742          | 0.9084    | 0.9072 | 0.9078 | 0.9707   |
| 0.0016        | 60.3175 | 7600  | 0.2549          | 0.9062    | 0.9101 | 0.9082 | 0.9714   |
| 0.0016        | 61.1111 | 7700  | 0.2714          | 0.9068    | 0.8963 | 0.9015 | 0.9695   |
| 0.0016        | 61.9048 | 7800  | 0.2801          | 0.9098    | 0.9062 | 0.9080 | 0.9715   |
| 0.0016        | 62.6984 | 7900  | 0.2818          | 0.9006    | 0.9072 | 0.9039 | 0.9705   |
| 0.0013        | 63.4921 | 8000  | 0.2923          | 0.9053    | 0.9068 | 0.9061 | 0.9711   |
| 0.0013        | 64.2857 | 8100  | 0.2944          | 0.9068    | 0.8900 | 0.8983 | 0.9686   |
| 0.0013        | 65.0794 | 8200  | 0.2941          | 0.9033    | 0.9075 | 0.9054 | 0.9706   |
| 0.0013        | 65.8730 | 8300  | 0.2801          | 0.9075    | 0.9006 | 0.9040 | 0.9699   |
| 0.0013        | 66.6667 | 8400  | 0.2822          | 0.9098    | 0.9131 | 0.9115 | 0.9722   |
| 0.0008        | 67.4603 | 8500  | 0.3013          | 0.9066    | 0.9016 | 0.9041 | 0.9701   |
| 0.0008        | 68.2540 | 8600  | 0.2670          | 0.9040    | 0.9144 | 0.9092 | 0.9719   |
| 0.0008        | 69.0476 | 8700  | 0.2941          | 0.9054    | 0.9012 | 0.9033 | 0.9701   |
| 0.0008        | 69.8413 | 8800  | 0.2911          | 0.9086    | 0.9065 | 0.9076 | 0.9717   |
| 0.0008        | 70.6349 | 8900  | 0.2783          | 0.9123    | 0.9111 | 0.9117 | 0.9726   |
| 0.0007        | 71.4286 | 9000  | 0.2877          | 0.9122    | 0.9022 | 0.9072 | 0.9715   |
| 0.0007        | 72.2222 | 9100  | 0.3021          | 0.9019    | 0.9138 | 0.9078 | 0.9706   |
| 0.0007        | 73.0159 | 9200  | 0.2869          | 0.9094    | 0.9118 | 0.9106 | 0.9721   |
| 0.0007        | 73.8095 | 9300  | 0.2928          | 0.9041    | 0.9095 | 0.9068 | 0.9706   |
| 0.0007        | 74.6032 | 9400  | 0.2896          | 0.9088    | 0.9088 | 0.9088 | 0.9716   |
| 0.0007        | 75.3968 | 9500  | 0.3008          | 0.9073    | 0.9118 | 0.9095 | 0.9716   |
| 0.0007        | 76.1905 | 9600  | 0.3019          | 0.9067    | 0.9082 | 0.9074 | 0.9710   |
| 0.0007        | 76.9841 | 9700  | 0.2924          | 0.9073    | 0.9148 | 0.9110 | 0.9717   |
| 0.0007        | 77.7778 | 9800  | 0.2856          | 0.9117    | 0.9138 | 0.9127 | 0.9726   |
| 0.0007        | 78.5714 | 9900  | 0.2924          | 0.9098    | 0.9098 | 0.9098 | 0.9719   |
| 0.0004        | 79.3651 | 10000 | 0.3100          | 0.9047    | 0.9121 | 0.9084 | 0.9715   |
| 0.0004        | 80.1587 | 10100 | 0.3055          | 0.9100    | 0.9082 | 0.9091 | 0.9719   |
| 0.0004        | 80.9524 | 10200 | 0.2990          | 0.9103    | 0.9125 | 0.9114 | 0.9725   |
| 0.0004        | 81.7460 | 10300 | 0.2980          | 0.9099    | 0.9039 | 0.9069 | 0.9714   |
| 0.0004        | 82.5397 | 10400 | 0.2954          | 0.9095    | 0.9128 | 0.9111 | 0.9724   |
| 0.0003        | 83.3333 | 10500 | 0.2993          | 0.9092    | 0.9125 | 0.9108 | 0.9722   |
| 0.0003        | 84.1270 | 10600 | 0.3036          | 0.9079    | 0.9118 | 0.9098 | 0.9720   |
| 0.0003        | 84.9206 | 10700 | 0.2919          | 0.9088    | 0.9121 | 0.9105 | 0.9722   |
| 0.0003        | 85.7143 | 10800 | 0.2948          | 0.9075    | 0.9105 | 0.9090 | 0.9719   |
| 0.0003        | 86.5079 | 10900 | 0.3037          | 0.9081    | 0.9078 | 0.9080 | 0.9717   |
| 0.0003        | 87.3016 | 11000 | 0.3039          | 0.9086    | 0.9125 | 0.9105 | 0.9724   |
| 0.0003        | 88.0952 | 11100 | 0.3019          | 0.9088    | 0.9115 | 0.9101 | 0.9721   |
| 0.0003        | 88.8889 | 11200 | 0.3064          | 0.9108    | 0.9111 | 0.9110 | 0.9724   |
| 0.0003        | 89.6825 | 11300 | 0.3017          | 0.9088    | 0.9115 | 0.9101 | 0.9721   |
| 0.0003        | 90.4762 | 11400 | 0.2813          | 0.9074    | 0.9098 | 0.9086 | 0.9717   |
| 0.0005        | 91.2698 | 11500 | 0.2895          | 0.9081    | 0.9078 | 0.9080 | 0.9716   |
| 0.0005        | 92.0635 | 11600 | 0.2950          | 0.9065    | 0.9098 | 0.9082 | 0.9716   |
| 0.0005        | 92.8571 | 11700 | 0.2880          | 0.9074    | 0.9134 | 0.9104 | 0.9720   |
| 0.0005        | 93.6508 | 11800 | 0.2947          | 0.9066    | 0.9134 | 0.9100 | 0.9717   |
| 0.0005        | 94.4444 | 11900 | 0.3003          | 0.9050    | 0.9068 | 0.9059 | 0.9706   |
| 0.0002        | 95.2381 | 12000 | 0.3018          | 0.9064    | 0.9115 | 0.9089 | 0.9714   |
| 0.0002        | 96.0317 | 12100 | 0.3008          | 0.9071    | 0.9131 | 0.9101 | 0.9717   |
| 0.0002        | 96.8254 | 12200 | 0.3011          | 0.9071    | 0.9131 | 0.9101 | 0.9717   |
| 0.0002        | 97.6190 | 12300 | 0.3007          | 0.9077    | 0.9134 | 0.9106 | 0.9719   |
| 0.0002        | 98.4127 | 12400 | 0.3017          | 0.9077    | 0.9134 | 0.9106 | 0.9719   |
| 0.0002        | 99.2063 | 12500 | 0.3024          | 0.9074    | 0.9128 | 0.9101 | 0.9717   |
| 0.0002        | 100.0   | 12600 | 0.3027          | 0.9074    | 0.9128 | 0.9101 | 0.9717   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1