starcoder2-7b-exl2 / README.md
bartowski's picture
Update README.md
514933e verified
|
raw
history blame
3.91 kB
metadata
pipeline_tag: text-generation
inference:
  parameters:
    temperature: 0.2
    top_p: 0.95
widget:
  - text: 'def print_hello_world():'
    example_title: Hello world
    group: Python
datasets:
  - bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
  - code
model-index:
  - name: starcoder2-7b
    results:
      - task:
          type: text-generation
        dataset:
          name: CruxEval-I
          type: cruxeval-i
        metrics:
          - type: pass@1
            value: 34.6
      - task:
          type: text-generation
        dataset:
          name: DS-1000
          type: ds-1000
        metrics:
          - type: pass@1
            value: 27.8
      - task:
          type: text-generation
        dataset:
          name: GSM8K (PAL)
          type: gsm8k-pal
        metrics:
          - type: accuracy
            value: 40.4
      - task:
          type: text-generation
        dataset:
          name: HumanEval+
          type: humanevalplus
        metrics:
          - type: pass@1
            value: 29.9
      - task:
          type: text-generation
        dataset:
          name: HumanEval
          type: humaneval
        metrics:
          - type: pass@1
            value: 35.4
      - task:
          type: text-generation
        dataset:
          name: RepoBench-v1.1
          type: repobench-v1.1
        metrics:
          - type: edit-smiliarity
            value: 72.07
quantized_by: bartowski

Exllama v2 Quantizations of starcoder2-7b

Using turboderp's ExLlamaV2 v0.0.14 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/bigcode/starcoder2-7b

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
8_0 8.0 8.0 8.4 GB 9.2 GB 10.2 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 7.1 GB 7.9 GB 8.9 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 5.8 GB 6.6 GB 7.6 GB Slightly lower quality vs 6.5, but usable on 8GB cards.
4_25 4.25 6.0 5.1 GB 5.9 GB 6.9 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 4.5 GB 5.3 GB 6.3 GB Lower quality, only use if you have to.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/starcoder2-7b-exl2 starcoder2-7b-exl2-6_5

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called starcoder2-7b-exl2:

mkdir starcoder2-7b-exl2
huggingface-cli download bartowski/starcoder2-7b-exl2 --local-dir starcoder2-7b-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

Linux:

mkdir starcoder2-7b-exl2-6_5
huggingface-cli download bartowski/starcoder2-7b-exl2 --revision 6_5 --local-dir starcoder2-7b-exl2-6_5 --local-dir-use-symlinks False

Windows (which apparently doesn't like _ in folders sometimes?):

mkdir starcoder2-7b-exl2-6.5
huggingface-cli download bartowski/starcoder2-7b-exl2 --revision 6_5 --local-dir starcoder2-7b-exl2-6.5 --local-dir-use-symlinks False

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski