bartowski's picture
Update README.md
8631d2e verified
metadata
license: apache-2.0
datasets:
  - PrimeIntellect/fineweb-edu
  - PrimeIntellect/fineweb
  - PrimeIntellect/StackV1-popular
  - mlfoundations/dclm-baseline-1.0-parquet
  - open-web-math/open-web-math
  - arcee-ai/EvolKit-75K
  - arcee-ai/Llama-405B-Logits
  - arcee-ai/The-Tomb
  - mlabonne/open-perfectblend-fixed
  - microsoft/orca-agentinstruct-1M-v1-cleaned
  - Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
  - Team-ACE/ToolACE
  - Synthia-coder
  - ServiceNow-AI/M2Lingual
  - AI-MO/NuminaMath-TIR
  - allenai/tulu-3-sft-personas-code
  - allenai/tulu-3-sft-personas-math
  - allenai/tulu-3-sft-personas-math-grade
  - allenai/tulu-3-sft-personas-algebra
language:
  - en
base_model:
  - PrimeIntellect/INTELLECT-1-Instruct
base_model_relation: quantized
pipeline_tag: text-generation
quantized_by: bartowski

Exllama v2 Quantizations of INTELLECT-1-Instruct

Using turboderp's ExLlamaV2 v0.2.4 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct

Prompt format

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Available sizes

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
8_0 8.0 8.0 11.9 GB 13.3 GB 15.3 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 10.3 GB 11.7 GB 13.7 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 8.3 GB 9.7 GB 11.7 GB Slightly lower quality vs 6.5, but usable on 8GB cards.
4_25 4.25 6.0 7.4 GB 8.6 GB 10.6 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 6.4 GB 7.8 GB 9.8 GB Lower quality, only use if you have to.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/INTELLECT-1-Instruct-exl2 INTELLECT-1-Instruct-exl2-6_5

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download a specific branch, use the --revision parameter. For example, to download the 6.5 bpw branch:

Linux:

huggingface-cli download bartowski/INTELLECT-1-Instruct-exl2 --revision 6_5 --local-dir INTELLECT-1-Instruct-exl2-6_5

Windows (which apparently doesn't like _ in folders sometimes?):

huggingface-cli download bartowski/INTELLECT-1-Instruct-exl2 --revision 6_5 --local-dir INTELLECT-1-Instruct-exl2-6.5

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski