|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- barc0/transduction_heavy_100k_jsonl |
|
- barc0/transduction_heavy_suggestfunction_100k_jsonl |
|
- barc0/transduction_rearc_dataset_400k |
|
- barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems |
|
- barc0/transduction_angmented_100k_gpt4o-mini_generated_problems |
|
model-index: |
|
- name: engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the barc0/transduction_heavy_100k_jsonl, the barc0/transduction_heavy_suggestfunction_100k_jsonl, the barc0/transduction_rearc_dataset_400k, the barc0/transduction_angmented_100k-gpt4-description-gpt4omini-code_generated_problems and the barc0/transduction_angmented_100k_gpt4o-mini_generated_problems datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0219 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.0378 | 1.0 | 3729 | 0.0330 | |
|
| 0.0234 | 2.0 | 7458 | 0.0227 | |
|
| 0.0116 | 3.0 | 11187 | 0.0219 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|