File size: 3,018 Bytes
75f2bdd 42ebcd7 75f2bdd 42ebcd7 75f2bdd 42ebcd7 75f2bdd 42ebcd7 75f2bdd 42ebcd7 75f2bdd 42ebcd7 75f2bdd 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 42ebcd7 d442bda 75f2bdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: microsoft/deberta-base
model-index:
- name: deberta-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9577488309953239
name: Precision
- type: recall
value: 0.9651632446987546
name: Recall
- type: f1
value: 0.961441743503772
name: F1
- type: accuracy
value: 0.9907182964622135
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.9108823919384779
name: Accuracy
verified: true
- type: precision
value: 0.9308372971460548
name: Precision
verified: true
- type: recall
value: 0.9213792387183881
name: Recall
verified: true
- type: f1
value: 0.9260841198729938
name: F1
verified: true
- type: loss
value: 0.8661637306213379
name: loss
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-finetuned-ner
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0515
- Precision: 0.9577
- Recall: 0.9652
- F1: 0.9614
- Accuracy: 0.9907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0742 | 1.0 | 1756 | 0.0526 | 0.9390 | 0.9510 | 0.9450 | 0.9868 |
| 0.0374 | 2.0 | 3512 | 0.0528 | 0.9421 | 0.9554 | 0.9487 | 0.9879 |
| 0.0205 | 3.0 | 5268 | 0.0505 | 0.9505 | 0.9636 | 0.9570 | 0.9900 |
| 0.0089 | 4.0 | 7024 | 0.0528 | 0.9531 | 0.9636 | 0.9583 | 0.9898 |
| 0.0076 | 5.0 | 8780 | 0.0515 | 0.9577 | 0.9652 | 0.9614 | 0.9907 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|