File size: 3,018 Bytes
75f2bdd
 
 
 
 
 
 
 
 
 
 
42ebcd7
75f2bdd
 
 
 
 
42ebcd7
75f2bdd
 
 
 
 
42ebcd7
75f2bdd
42ebcd7
 
75f2bdd
42ebcd7
 
75f2bdd
42ebcd7
 
75f2bdd
42ebcd7
d442bda
 
 
 
 
 
 
 
 
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
42ebcd7
d442bda
75f2bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: microsoft/deberta-base
model-index:
- name: deberta-finetuned-ner
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.9577488309953239
      name: Precision
    - type: recall
      value: 0.9651632446987546
      name: Recall
    - type: f1
      value: 0.961441743503772
      name: F1
    - type: accuracy
      value: 0.9907182964622135
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
    metrics:
    - type: accuracy
      value: 0.9108823919384779
      name: Accuracy
      verified: true
    - type: precision
      value: 0.9308372971460548
      name: Precision
      verified: true
    - type: recall
      value: 0.9213792387183881
      name: Recall
      verified: true
    - type: f1
      value: 0.9260841198729938
      name: F1
      verified: true
    - type: loss
      value: 0.8661637306213379
      name: loss
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-finetuned-ner

This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0515
- Precision: 0.9577
- Recall: 0.9652
- F1: 0.9614
- Accuracy: 0.9907

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0742        | 1.0   | 1756 | 0.0526          | 0.9390    | 0.9510 | 0.9450 | 0.9868   |
| 0.0374        | 2.0   | 3512 | 0.0528          | 0.9421    | 0.9554 | 0.9487 | 0.9879   |
| 0.0205        | 3.0   | 5268 | 0.0505          | 0.9505    | 0.9636 | 0.9570 | 0.9900   |
| 0.0089        | 4.0   | 7024 | 0.0528          | 0.9531    | 0.9636 | 0.9583 | 0.9898   |
| 0.0076        | 5.0   | 8780 | 0.0515          | 0.9577    | 0.9652 | 0.9614 | 0.9907   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1