bert-finetuned-ner / README.md
balamurugan1603's picture
Create README.md
fc2a686
|
raw
history blame
1.53 kB
# Named Entity Recognition using Transformers
This is a Fine-tuned version of BERT using HuggingFace transformers to perform Named Entity Recognition on Text data. BERT is a state-of-the-art model with attention mechanism as underlying architecture trained with masked-language-modeling and next-sentence-prediction objectives, used for various tasks including Question answering systems, Text Summarization, etc... which can also perform token classification tasks such as NER with great performance.
# Dataset
**CoNLL-2003** :
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on four types of named entities: persons, locations, organizations, and names of miscellaneous entities that do not belong to the previous three groups.<br><br>
**Link** : https://huggingface.co/datasets/conll2003
# Using this fine-tuned version
From python, download the whole pipeline and use it instantly using the following code :
```
from transformers import pipeline
# Loading the pipeline from hub
# Pipeline handles the preprocessing and post processing steps
model_checkpoint = "balamurugan1603/bert-finetuned-ner"
namedEntityRecogniser = pipeline(
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
)
```
Reference for using this pipeline to find NER tags can be found in this <a href="https://github.com/balamurugan1603/Named-Entity-Recognition-using-Tranformers/blob/main/named-entity-recognition-using-transfer-learning.ipynb">notebook</a>.