File size: 12,085 Bytes
bf21a79
 
 
 
 
 
 
 
 
 
 
 
 
aba15e5
bf21a79
 
 
 
 
 
 
 
 
 
 
65b4bd2
bf21a79
 
 
 
 
 
 
65b4bd2
bf21a79
 
 
65b4bd2
 
 
 
 
 
720a1a6
6742ee9
 
 
 
 
 
 
 
65b4bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720a1a6
 
65b4bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aa1354
65b4bd2
 
 
 
7aa1354
65b4bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf21a79
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4bd2
bf21a79
 
65b4bd2
 
 
 
bf21a79
65b4bd2
bf21a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4bd2
bf21a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b4bd2
bf21a79
 
65b4bd2
 
 
 
bf21a79
65b4bd2
bf21a79
 
 
 
 
 
 
 
 
 
 
657acba
bf21a79
 
 
720a1a6
 
bf21a79
 
 
 
 
 
657acba
bf21a79
 
657acba
bf21a79
 
 
 
 
65b4bd2
657acba
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
language: ar
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Sinai Voice Arabic Speech Recognition Model
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice ar
      type: common_voice
      args: ar
    metrics:
       - name: Test WER
         type: wer
         value: 23.80
---

# Sinai Voice Arabic Speech Recognition Model
# نموذج **صوت سيناء** للتعرف على الأصوات العربية الفصحى و تحويلها إلى نصوص
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice)

Most of evaluation codes in this documentation are INSPIRED by  [elgeish/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic)

Please install:
- [PyTorch](https://pytorch.org/)
- `$ pip3 install jiwer lang_trans torchaudio datasets transformers pandas tqdm`

## Benchmark

We evaluated the model against different Arabic-STT Wav2Vec models.

|    | Model                                 | [using transliteration](https://pypi.org/project/lang-trans/)   |      WER |      Training Datasets |
|---:|:--------------------------------------|:---------------------|---------:|---------:|
|  1 | bakrianoo/sinai-voice-ar-stt          | True                 | 0.238001 |Common Voice 6|
|  2 | elgeish/wav2vec2-large-xlsr-53-arabic | True                 | 0.266527 |Common Voice 6 + Arabic Speech Corpus|
|  3 | othrif/wav2vec2-large-xlsr-arabic     | True                 | 0.298122 |Common Voice 6|
|  4 | bakrianoo/sinai-voice-ar-stt          | False                | 0.448987 |Common Voice 6|
|  5 | othrif/wav2vec2-large-xlsr-arabic     | False                | 0.464004 |Common Voice 6|
|  6 | anas/wav2vec2-large-xlsr-arabic       | True                 | 0.506191 |Common Voice 4|
|  7 | anas/wav2vec2-large-xlsr-arabic       | False                | 0.622288 |Common Voice 4|


<details>
<summary>We used the following <b>CODE</b> to generate the above results</summary>

```python
import jiwer
import torch
from tqdm.auto import tqdm
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
import pandas as pd

# load test dataset
set_seed(42)
test_split = load_dataset("common_voice", "ar", split="test")

# init sample rate resamplers
resamplers = {  # all three sampling rates exist in test split
    48000: torchaudio.transforms.Resample(48000, 16000),
    44100: torchaudio.transforms.Resample(44100, 16000),
    32000: torchaudio.transforms.Resample(32000, 16000),
}

# WER composer
transformation = jiwer.Compose([
    # normalize some diacritics, remove punctuation, and replace Persian letters with Arabic ones
    jiwer.SubstituteRegexes({
        r'[auiFNKo\\\\\\\\\\\\\\\\~_،؟»\\\\\\\\\\\\\\\\?;:\\\\\\\\\\\\\\\\-,\\\\\\\\\\\\\\\\.؛«!"]': "", "\\\\\\\\\\\\\\\\u06D6": "",
        r"[\\\\\\\\\\\\\\\\|\\\\\\\\\\\\\\\\{]": "A", "p": "h", "ک": "k", "ی": "y"}),
    # default transformation below
    jiwer.RemoveMultipleSpaces(),
    jiwer.Strip(),
    jiwer.SentencesToListOfWords(),
    jiwer.RemoveEmptyStrings(),
])

def prepare_example(example):
    speech, sampling_rate = torchaudio.load(example["path"])
    if sampling_rate in resamplers:
        example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
    else:
        example["speech"] = resamplers[4800](speech).squeeze().numpy()
    return example

def predict(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
    with torch.no_grad():
        predicted = torch.argmax(model(inputs.input_values.to("cuda")).logits, dim=-1)
    predicted[predicted == -100] = processor.tokenizer.pad_token_id  # see fine-tuning script
    batch["predicted"] = processor.batch_decode(predicted)
    return batch

# prepare the test dataset
test_split = test_split.map(prepare_example)

stt_models = [
   "elgeish/wav2vec2-large-xlsr-53-arabic",
   "othrif/wav2vec2-large-xlsr-arabic",
   "anas/wav2vec2-large-xlsr-arabic",
   "bakrianoo/sinai-voice-ar-stt"
]

stt_results = []

for model_path in tqdm(stt_models):
    processor = Wav2Vec2Processor.from_pretrained(model_path)
    model = Wav2Vec2ForCTC.from_pretrained(model_path).to("cuda").eval()
    
    test_split_preds = test_split.map(predict, batched=True, batch_size=56, remove_columns=["speech"])
    
    orig_metrics = jiwer.compute_measures(
        truth=[s for s in test_split_preds["sentence"]],
        hypothesis=[s for s in test_split_preds["predicted"]],
        truth_transform=transformation,
        hypothesis_transform=transformation,
    )
    
    trans_metrics = jiwer.compute_measures(
        truth=[buckwalter.trans(s) for s in test_split_preds["sentence"]],  # Buckwalter transliteration
        hypothesis=[buckwalter.trans(s) for s in test_split_preds["predicted"]], # Buckwalter transliteration
        truth_transform=transformation,
        hypothesis_transform=transformation,
    )
    
    stt_results.append({
        "model": model_path,
        "using_transliation": True,
        "WER": trans_metrics["wer"]
    })
    
    stt_results.append({
        "model": model_path,
        "using_transliation": False,
        "WER": orig_metrics["wer"]
    })
    
    del model
    del processor
    
stt_results_df = pd.DataFrame(stt_results)
stt_results_df = stt_results_df.sort_values('WER', axis=0, ascending=True)
stt_results_df.head(n=50)

```
</details>


## Usage

The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
dataset = load_dataset("common_voice", "ar", split="test[:10]")
resamplers = {  # all three sampling rates exist in test split
    48000: torchaudio.transforms.Resample(48000, 16000),
    44100: torchaudio.transforms.Resample(44100, 16000),
    32000: torchaudio.transforms.Resample(32000, 16000),
}

def prepare_example(example):
    speech, sampling_rate = torchaudio.load(example["path"])
    if sampling_rate in resamplers:
        example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
    else:
        example["speech"] = resamplers[4800](speech).squeeze().numpy()
    return example
   
dataset = dataset.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained("bakrianoo/sinai-voice-ar-stt")
model = Wav2Vec2ForCTC.from_pretrained("bakrianoo/sinai-voice-ar-stt").eval()
def predict(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
    with torch.no_grad():
        predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
    predicted[predicted == -100] = processor.tokenizer.pad_token_id  # see fine-tuning script
    batch["predicted"] = processor.tokenizer.batch_decode(predicted)
    return batch
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]):
    print("reference:", reference)
    print("predicted:", predicted)
    print("--")
```
Here's the output:
```
reference: ألديك قلم ؟
predicted: ألديك قلم
--
reference: ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.
predicted: ليست نارك مسافة على هذه الأرض أبعد من يوم أمس
--
reference: إنك تكبر المشكلة.
predicted: إنك تكبر المشكلة
--
reference: يرغب أن يلتقي بك.
predicted: يرغب أن يلتقي بك
--
reference: إنهم لا يعرفون لماذا حتى.
predicted: إنهم لا يعرفون لماذا حتى
--
reference: سيسعدني مساعدتك أي وقت تحب.
predicted: سيسعدن مساعثتك أي وقد تحب
--
reference: أَحَبُّ نظريّة علمية إليّ هي أن حلقات زحل مكونة بالكامل من الأمتعة المفقودة.
predicted: أحب نظرية علمية إلي هي أن أحلقتز حلم كوينا بالكامل من الأمت عن المفقودة
--
reference: سأشتري له قلماً.
predicted: سأشتري له قلما
--
reference: أين المشكلة ؟
predicted: أين المشكل
--
reference: وَلِلَّهِ يَسْجُدُ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ مِنْ دَابَّةٍ وَالْمَلَائِكَةُ وَهُمْ لَا يَسْتَكْبِرُونَ
predicted: ولله يسجد ما في السماوات وما في الأرض من دابة والملائكة وهم لا يستكبرون
```

## Evaluation

The model can be evaluated as follows on the Arabic test data of Common Voice:
```python
import jiwer
import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
set_seed(42)
test_split = load_dataset("common_voice", "ar", split="test")
resamplers = {  # all three sampling rates exist in test split
    48000: torchaudio.transforms.Resample(48000, 16000),
    44100: torchaudio.transforms.Resample(44100, 16000),
    32000: torchaudio.transforms.Resample(32000, 16000),
}

def prepare_example(example):
    speech, sampling_rate = torchaudio.load(example["path"])
    if sampling_rate in resamplers:
        example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
    else:
        example["speech"] = resamplers[4800](speech).squeeze().numpy()
    return example
 
test_split = test_split.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained("bakrianoo/sinai-voice-ar-stt")
model = Wav2Vec2ForCTC.from_pretrained("bakrianoo/sinai-voice-ar-stt").to("cuda").eval()
def predict(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
    with torch.no_grad():
        predicted = torch.argmax(model(inputs.input_values.to("cuda")).logits, dim=-1)
    predicted[predicted == -100] = processor.tokenizer.pad_token_id  # see fine-tuning script
    batch["predicted"] = processor.batch_decode(predicted)
    return batch
test_split = test_split.map(predict, batched=True, batch_size=16, remove_columns=["speech"])

transformation = jiwer.Compose([
    # normalize some diacritics, remove punctuation, and replace Persian letters with Arabic ones
    jiwer.SubstituteRegexes({
        r'[auiFNKo\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\~_،؟»\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?;:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.؛«!"]': "", "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\u06D6": "",
        r"[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\|\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\{]": "A", "p": "h", "ک": "k", "ی": "y"}),
    # default transformation below
    jiwer.RemoveMultipleSpaces(),
    jiwer.Strip(),
    jiwer.SentencesToListOfWords(),
    jiwer.RemoveEmptyStrings(),
])

metrics = jiwer.compute_measures(
    truth=[buckwalter.trans(s) for s in test_split["sentence"]],  # Buckwalter transliteration
    hypothesis=[buckwalter.trans(s) for s in test_split["predicted"]],
    truth_transform=transformation,
    hypothesis_transform=transformation,
)
print(f"WER: {metrics['wer']:.2%}")
```
**Test Result**: 23.80%


## Other Arabic Voice recognition Models

الكلمات لا تكفى لشكر أولئك الذين يؤمنون أن هنالك أمل, و يسعون من أجله

- [elgeish/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic)
- [othrif/wav2vec2-large-xlsr-arabic](https://huggingface.co/othrif/wav2vec2-large-xlsr-arabic)
- [anas/wav2vec2-large-xlsr-arabic](https://huggingface.co/anas/wav2vec2-large-xlsr-arabic)