Llama-3.1-security / README.md
bakch92's picture
Update README.md
91d4d4e verified
metadata
library_name: transformers
license: apache-2.0

Model Card for Model ID

Model Details

This Model fine-tuned by Security dataset. I will fine-tune continuous...

Model Description

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

model_id = 'model_result'

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    #torch_dtype=torch.bfloat16,
    quantization_config=bnb_config, # 4-bit quantization (4λΉ„νŠΈ μ–‘μžν™”)
    device_map="auto",
)

model.eval()

from transformers import TextStreamer

def inference(input: str):
    streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
    
    messages = [
        {"role": "system", "content": "You are an information security AI assistant. Information security questions must be answered accurately."},
        {"role": "user", "content": f"Please provide concise, non-repetitive answers to the following questions:\n {input}"}
        # {"role": "user", "content": f"{input}"}
        ]
    
    input_ids = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt",
    ).to(model.device)
    
    outputs = model.generate(
        input_ids,
        streamer=streamer,
        max_new_tokens=8192,
        num_beams=1,
        do_sample=True,
        temperature=0.1,
        top_p=0.95,
        top_k=10
    )

inference("ν•΄ν‚Ή λ‹Ήν•˜μ§€ μ•ŠμœΌλ €λ©΄ μ–΄λ–»κ²Œ ν•΄μ•Όν•˜λŠ”μ§€ μ•Œλ €μ€˜.")

ν•΄ν‚Ή λ‹Ήν•˜μ§€ μ•ŠμœΌλ €λ©΄ λ‹€μŒκ³Ό 같은 것듀을 κ³ λ €ν•΄ λ³΄μ„Έμš”:

1. **νŒ¨μŠ€μ›Œλ“œ 관리**: κ°•λ ₯ν•œ νŒ¨μŠ€μ›Œλ“œλ₯Ό μ‚¬μš©ν•˜κ³ , νŒ¨μŠ€μ›Œλ“œμ˜ λ³΅μž‘μ„±κ³Ό λ³€ν™˜ μ£ΌκΈ°λ₯Ό 잘 μœ μ§€ν•˜μ„Έμš”.
2. **μ‹œμŠ€ν…œ μ—…λ°μ΄νŠΈ**: μ΅œμ‹  μ†Œν”„νŠΈμ›¨μ–΄μ™€ λ³΄μ•ˆ 패치λ₯Ό μ„€μΉ˜ν•˜κ³ , μ§€μ†μ μœΌλ‘œ μ‹œμŠ€ν…œμ„ μ—…λ°μ΄νŠΈν•˜μ„Έμš”.
3. **μŠ€μΊ” 및 검사**: μ‹œμŠ€ν…œκ³Ό λ„€νŠΈμ›Œν¬λ₯Ό 자주 μŠ€μΊ”ν•˜κ³ , λ³΄μ•ˆ 취약점을 검사해 λ³΄μ„Έμš”.
4. **μ•ˆμ „ν•œ λΈŒλΌμš°μ§•**: μ•ˆμ „ν•œ λΈŒλΌμš°μ €μ™€ ν™•μž₯ κΈ°λŠ₯을 μ‚¬μš©ν•˜κ³ , μ•…μ„± μ†Œν”„νŠΈμ›¨μ–΄ μ„€μΉ˜λ₯Ό λ°©μ§€ν•˜μ„Έμš”.
5. **데이터 λ°±μ—…**: μ€‘μš”ν•œ 데이터λ₯Ό λ°±μ—…ν•˜κ³ , 이λ₯Ό μ•ˆμ „ν•œ μ €μž₯μ†Œμ— λ³΄κ΄€ν•˜μ„Έμš”.
6. **λ„€νŠΈμ›Œν¬ λ³΄μ•ˆ**: λ„€νŠΈμ›Œν¬ λ³΄μ•ˆ μž₯λΉ„λ₯Ό μ‚¬μš©ν•˜κ³ , μΉ¨μž…μžμ— λŒ€ν•œ ν†΅μ œμ™€ κ°μ‹œλ₯Ό μœ μ§€ν•˜μ„Έμš”.
7. **μ‚¬μš©μž ꡐ윑**: μ‚¬μš©μžλ“€μ΄ μ•ˆμ „ν•œ μ‚¬μš© 방법을 μ΄ν•΄ν•˜κ³ , 정보 λ³΄μ•ˆμ— λŒ€ν•œ μ€‘μš”μ„±μ„ μΈμ§€ν•˜μ„Έμš”.
8. **κ³„μ•½μž 관리**: κ³„μ•½μžμ™€ νŒŒνŠΈλ„ˆμ™€μ˜ 계약을 잘 ν™•μΈν•˜κ³ , 정보 λ³΄μ•ˆμ— λŒ€ν•œ ν•©μ˜λ₯Ό μœ μ§€ν•˜μ„Έμš”.

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]