baiall commited on
Commit
4608882
1 Parent(s): 0d8fbb3

Upload 14 files

Browse files
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLM-4V-9B-4bits
2
+
3
+
4
+ ## Quick Start
5
+
6
+ ```python
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer
11
+
12
+ device = "cuda"
13
+
14
+ tokenizer = AutoTokenizer.from_pretrained("vcadillo/glm-4v-9b-4-bits", trust_remote_code=True)
15
+
16
+ query = 'discribe this image'
17
+ image = Image.open("your image").convert('RGB')
18
+ inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
19
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
20
+ return_dict=True) # chat mode
21
+
22
+ inputs = inputs.to(device)
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ "vcadillo/glm-4v-9b-4-bits",
25
+ torch_dtype=torch.bfloat16,
26
+ low_cpu_mem_usage=True,
27
+ trust_remote_code=True,
28
+ device_map='auto',
29
+ ).eval()
30
+
31
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
32
+ with torch.no_grad():
33
+ outputs = model.generate(**inputs, **gen_kwargs)
34
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
35
+ print(tokenizer.decode(outputs[0]))
36
+ ```
37
+
38
+ ## License
39
+
40
+ The use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE).
41
+
42
+ ## Citation
43
+
44
+ If you find our work helpful, please consider citing the following papers.
45
+
46
+ ```
47
+ @article{zeng2022glm,
48
+ title={Glm-130b: An open bilingual pre-trained model},
49
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
50
+ journal={arXiv preprint arXiv:2210.02414},
51
+ year={2022}
52
+ }
53
+ ```
54
+
55
+ ```
56
+ @inproceedings{du2022glm,
57
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
58
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
59
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
60
+ pages={320--335},
61
+ year={2022}
62
+ }
63
+ ```
64
+
65
+ ```
66
+ @misc{wang2023cogvlm,
67
+ title={CogVLM: Visual Expert for Pretrained Language Models},
68
+ author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
69
+ year={2023},
70
+ eprint={2311.03079},
71
+ archivePrefix={arXiv},
72
+ primaryClass={cs.CV}
73
+ }
74
+ ```
75
+
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "glm-4v-9b-4-bits",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
14
+ "AutoModel": "THUDM/glm-4v-9b--modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSeq2SeqLM": "THUDM/glm-4v-9b--modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSequenceClassification": "THUDM/glm-4v-9b--modeling_chatglm.ChatGLMForSequenceClassification"
18
+ },
19
+ "bias_dropout_fusion": true,
20
+ "boi_token_id": 151339,
21
+ "classifier_dropout": null,
22
+ "eoi_token_id": 151340,
23
+ "eos_token_id": [
24
+ 151329,
25
+ 151336,
26
+ 151338
27
+ ],
28
+ "ffn_hidden_size": 13696,
29
+ "fp32_residual_connection": false,
30
+ "hidden_dropout": 0.0,
31
+ "hidden_size": 4096,
32
+ "kv_channels": 128,
33
+ "layernorm_epsilon": 1.5625e-07,
34
+ "model_type": "chatglm",
35
+ "multi_query_attention": true,
36
+ "multi_query_group_num": 2,
37
+ "num_attention_heads": 32,
38
+ "num_layers": 40,
39
+ "original_rope": true,
40
+ "pad_token_id": 151329,
41
+ "padded_vocab_size": 151552,
42
+ "post_layer_norm": true,
43
+ "pre_seq_len": null,
44
+ "prefix_projection": false,
45
+ "quantization_config": {
46
+ "_load_in_4bit": true,
47
+ "_load_in_8bit": false,
48
+ "bnb_4bit_compute_dtype": "float16",
49
+ "bnb_4bit_quant_storage": "uint8",
50
+ "bnb_4bit_quant_type": "nf4",
51
+ "bnb_4bit_use_double_quant": false,
52
+ "llm_int8_enable_fp32_cpu_offload": false,
53
+ "llm_int8_has_fp16_weight": false,
54
+ "llm_int8_skip_modules": null,
55
+ "llm_int8_threshold": 6.0,
56
+ "load_in_4bit": true,
57
+ "load_in_8bit": false,
58
+ "quant_method": "bitsandbytes"
59
+ },
60
+ "rmsnorm": true,
61
+ "rope_ratio": 1,
62
+ "seq_length": 8192,
63
+ "tie_word_embeddings": false,
64
+ "torch_dtype": "float16",
65
+ "transformers_version": "4.41.2",
66
+ "use_cache": true,
67
+ "vision_config": {
68
+ "dropout_prob": 0.0,
69
+ "hidden_act": "gelu",
70
+ "hidden_size": 1792,
71
+ "image_size": 1120,
72
+ "in_channels": 3,
73
+ "intermediate_size": 15360,
74
+ "layer_norm_eps": 1e-06,
75
+ "num_heads": 16,
76
+ "num_hidden_layers": 63,
77
+ "num_positions": 6401,
78
+ "patch_size": 14,
79
+ "scaling_factor": 8
80
+ },
81
+ "vocab_size": 151552
82
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ pre_seq_len=None,
33
+ prefix_projection=False,
34
+ boi_token_id=None,
35
+ eoi_token_id=None,
36
+ **kwargs
37
+ ):
38
+ self.num_layers = num_layers
39
+ self.vocab_size = padded_vocab_size
40
+ self.padded_vocab_size = padded_vocab_size
41
+ self.hidden_size = hidden_size
42
+ self.ffn_hidden_size = ffn_hidden_size
43
+ self.kv_channels = kv_channels
44
+ self.num_attention_heads = num_attention_heads
45
+ self.seq_length = seq_length
46
+ self.hidden_dropout = hidden_dropout
47
+ self.classifier_dropout = classifier_dropout
48
+ self.attention_dropout = attention_dropout
49
+ self.layernorm_epsilon = layernorm_epsilon
50
+ self.rmsnorm = rmsnorm
51
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
52
+ self.post_layer_norm = post_layer_norm
53
+ self.add_bias_linear = add_bias_linear
54
+ self.add_qkv_bias = add_qkv_bias
55
+ self.bias_dropout_fusion = bias_dropout_fusion
56
+ self.multi_query_attention = multi_query_attention
57
+ self.multi_query_group_num = multi_query_group_num
58
+ self.rope_ratio = rope_ratio
59
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
60
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
61
+ self.fp32_residual_connection = fp32_residual_connection
62
+ self.pre_seq_len = pre_seq_len
63
+ self.prefix_projection = prefix_projection
64
+ self.boi_token_id = boi_token_id
65
+ self.eoi_token_id = eoi_token_id
66
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "pad_token_id": 151329,
9
+ "transformers_version": "4.41.2"
10
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09b7aad011b04d5ffacb8023e078e0700f798133f71cbd1743c906df2ac7b2ad
3
+ size 4996695244
model-00001-of-00002.safetensors.baiduyun.uploading.cfg ADDED
Binary file (451 Bytes). View file
 
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d7c3d9a81915546f1f30451061ad700ac4208412d50d26ea49250119cc0196
3
+ size 3782170696
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_chatglm.py ADDED
@@ -0,0 +1,1358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+ import json
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
14
+ from torch.nn.utils import skip_init
15
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
16
+ from copy import deepcopy
17
+
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPast,
20
+ CausalLMOutputWithPast,
21
+ SequenceClassifierOutputWithPast,
22
+ )
23
+ from transformers.modeling_utils import PreTrainedModel
24
+ from transformers.utils import logging
25
+ from transformers.generation.logits_process import LogitsProcessor
26
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
27
+
28
+ from .configuration_chatglm import ChatGLMConfig
29
+ from .visual import EVA2CLIPModel
30
+
31
+ # flags required to enable jit fusion kernels
32
+
33
+ if sys.platform != 'darwin':
34
+ torch._C._jit_set_profiling_mode(False)
35
+ torch._C._jit_set_profiling_executor(False)
36
+ torch._C._jit_override_can_fuse_on_cpu(True)
37
+ torch._C._jit_override_can_fuse_on_gpu(True)
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ LANGUAGE_TOKEN_TYPE = 0
42
+ VISION_TOKEN_TYPE = 1
43
+
44
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
45
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
46
+
47
+ def default_init(cls, *args, **kwargs):
48
+ return cls(*args, **kwargs)
49
+
50
+
51
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
52
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
53
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
54
+ scores.zero_()
55
+ scores[..., 198] = 5e4
56
+ return scores
57
+
58
+
59
+ class PrefixEncoder(torch.nn.Module):
60
+ """
61
+ The torch.nn model to encode the prefix
62
+ Input shape: (batch-size, prefix-length)
63
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
64
+ """
65
+
66
+ def __init__(self, config: ChatGLMConfig):
67
+ super().__init__()
68
+ self.prefix_projection = config.prefix_projection
69
+ if self.prefix_projection:
70
+ # Use a two-layer MLP to encode the prefix
71
+ kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
72
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
73
+ self.trans = torch.nn.Sequential(
74
+ torch.nn.Linear(kv_size, config.hidden_size),
75
+ torch.nn.Tanh(),
76
+ torch.nn.Linear(config.hidden_size, kv_size)
77
+ )
78
+ else:
79
+ self.embedding = torch.nn.Embedding(config.pre_seq_len,
80
+ config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
81
+
82
+ def forward(self, prefix: torch.Tensor):
83
+ if self.prefix_projection:
84
+ prefix_tokens = self.embedding(prefix)
85
+ past_key_values = self.trans(prefix_tokens)
86
+ else:
87
+ past_key_values = self.embedding(prefix)
88
+ return past_key_values
89
+
90
+
91
+ def split_tensor_along_last_dim(
92
+ tensor: torch.Tensor,
93
+ num_partitions: int,
94
+ contiguous_split_chunks: bool = False,
95
+ ) -> List[torch.Tensor]:
96
+ """Split a tensor along its last dimension.
97
+
98
+ Arguments:
99
+ tensor: input tensor.
100
+ num_partitions: number of partitions to split the tensor
101
+ contiguous_split_chunks: If True, make each chunk contiguous
102
+ in memory.
103
+
104
+ Returns:
105
+ A list of Tensors
106
+ """
107
+ # Get the size and dimension.
108
+ last_dim = tensor.dim() - 1
109
+ last_dim_size = tensor.size()[last_dim] // num_partitions
110
+ # Split.
111
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
112
+ # Note: torch.split does not create contiguous tensors by default.
113
+ if contiguous_split_chunks:
114
+ return tuple(chunk.contiguous() for chunk in tensor_list)
115
+
116
+ return tensor_list
117
+
118
+
119
+ class RotaryEmbedding(nn.Module):
120
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
121
+ super().__init__()
122
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
123
+ self.register_buffer("inv_freq", inv_freq)
124
+ self.dim = dim
125
+ self.original_impl = original_impl
126
+ self.rope_ratio = rope_ratio
127
+
128
+ def impl(self, seq_length: int, dim: int, device: torch.device, dtype: torch.dtype):
129
+ base = 10000 * self.rope_ratio
130
+ inv_freq = 1.0 / (
131
+ base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
132
+ seq = torch.arange(seq_length, device=inv_freq.device, dtype=torch.float32)
133
+ freqs = torch.outer(seq, inv_freq)
134
+ # first part even vector components, second part odd vector components,
135
+ # 2 * dim in dimension size
136
+ emb = torch.cat((freqs, freqs), dim=-1)
137
+ return emb
138
+
139
+ def forward_impl(
140
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
141
+ ):
142
+ """Enhanced Transformer with Rotary Position Embedding.
143
+
144
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
145
+ transformers/rope/__init__.py. MIT License:
146
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
147
+ """
148
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
149
+ base = base * self.rope_ratio
150
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
151
+
152
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
153
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
154
+
155
+ # Calculate the product of position index and $\theta_i$
156
+ idx_theta = torch.outer(seq_idx, theta).float()
157
+
158
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
159
+
160
+ # this is to mimic the behaviour of complex32, else we will get different results
161
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
162
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
163
+ return cache
164
+
165
+ def forward(self, max_seq_len, offset=0):
166
+ if self.original_impl:
167
+ return self.forward_impl(
168
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
169
+ )
170
+ else:
171
+ return self.impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device)
172
+
173
+
174
+ @torch.jit.script
175
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
176
+ # x: [b, np, sq, hn]
177
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
178
+ rot_dim = rope_cache.shape[-2] * 2
179
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
180
+ # truncate to support variable sizes
181
+ rope_cache = rope_cache[:, :sq]
182
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
183
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
184
+ x_out2 = torch.stack(
185
+ [
186
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
187
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
188
+ ],
189
+ -1,
190
+ )
191
+ x_out2 = x_out2.flatten(3)
192
+ return torch.cat((x_out2, x_pass), dim=-1)
193
+
194
+
195
+ class RMSNorm(torch.nn.Module):
196
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
197
+ super().__init__()
198
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
199
+ self.eps = eps
200
+
201
+ def forward(self, hidden_states: torch.Tensor):
202
+ input_dtype = hidden_states.dtype
203
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
204
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
205
+
206
+ return (self.weight * hidden_states).to(input_dtype)
207
+
208
+
209
+ class CoreAttention(torch.nn.Module):
210
+ def __init__(self, config: ChatGLMConfig, layer_number):
211
+ super(CoreAttention, self).__init__()
212
+
213
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
214
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
215
+ if self.apply_query_key_layer_scaling:
216
+ self.attention_softmax_in_fp32 = True
217
+ self.layer_number = max(1, layer_number)
218
+
219
+ projection_size = config.kv_channels * config.num_attention_heads
220
+
221
+ # Per attention head and per partition values.
222
+ self.hidden_size_per_partition = projection_size
223
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
224
+ self.num_attention_heads_per_partition = config.num_attention_heads
225
+
226
+ coeff = None
227
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
228
+ if self.apply_query_key_layer_scaling:
229
+ coeff = self.layer_number
230
+ self.norm_factor *= coeff
231
+ self.coeff = coeff
232
+
233
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
234
+
235
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
236
+ pytorch_major_version = int(torch.__version__.split('.')[0])
237
+ if pytorch_major_version >= 2:
238
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
239
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
240
+ is_causal=True)
241
+ else:
242
+ if attention_mask is not None:
243
+ attention_mask = ~attention_mask
244
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
245
+ attention_mask)
246
+ context_layer = context_layer.transpose(1, 2).contiguous()
247
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
248
+ context_layer = context_layer.reshape(*new_context_layer_shape)
249
+ else:
250
+ # Raw attention scores
251
+
252
+ # [b, np, sq, sk]
253
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
254
+
255
+ # [b, np, sq, hn] -> [b * np, sq, hn]
256
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
257
+ # [b, np, sk, hn] -> [b * np, sk, hn]
258
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
259
+
260
+ # preallocting input tensor: [b * np, sq, sk]
261
+ matmul_input_buffer = torch.empty(
262
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
263
+ device=query_layer.device
264
+ )
265
+
266
+ # Raw attention scores. [b * np, sq, sk]
267
+ matmul_result = torch.baddbmm(
268
+ matmul_input_buffer,
269
+ query_layer, # [b * np, sq, hn]
270
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
271
+ beta=0.0,
272
+ alpha=(1.0 / self.norm_factor),
273
+ )
274
+
275
+ # change view to [b, np, sq, sk]
276
+ attention_scores = matmul_result.view(*output_size)
277
+
278
+ # ===========================
279
+ # Attention probs and dropout
280
+ # ===========================
281
+
282
+ # attention scores and attention mask [b, np, sq, sk]
283
+ if self.attention_softmax_in_fp32:
284
+ attention_scores = attention_scores.float()
285
+ if self.coeff is not None:
286
+ attention_scores = attention_scores * self.coeff
287
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
288
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
289
+ device=attention_scores.device, dtype=torch.bool)
290
+ attention_mask.tril_()
291
+ attention_mask = ~attention_mask
292
+ if attention_mask is not None:
293
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
294
+ attention_probs = F.softmax(attention_scores, dim=-1)
295
+ attention_probs = attention_probs.type_as(value_layer)
296
+
297
+ # This is actually dropping out entire tokens to attend to, which might
298
+ # seem a bit unusual, but is taken from the original Transformer paper.
299
+ attention_probs = self.attention_dropout(attention_probs)
300
+ # =========================
301
+ # Context layer. [sq, b, hp]
302
+ # =========================
303
+
304
+ # value_layer -> context layer.
305
+ # [sk, b, np, hn] --> [b, np, sq, hn]
306
+
307
+ # context layer shape: [b, np, sq, hn]
308
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
309
+ # change view [b * np, sk, hn]
310
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
311
+ # change view [b * np, sq, sk]
312
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
313
+ # matmul: [b * np, sq, hn]
314
+ context_layer = torch.bmm(attention_probs, value_layer)
315
+ # change view [b, np, sq, hn]
316
+ context_layer = context_layer.view(*output_size)
317
+ # [b, np, sq, hn] --> [b, sq, np, hn]
318
+ context_layer = context_layer.transpose(1, 2).contiguous()
319
+ # [b, sq, np, hn] --> [b, sq, hp]
320
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
321
+ context_layer = context_layer.reshape(*new_context_layer_shape)
322
+
323
+ return context_layer
324
+
325
+
326
+ class SelfAttention(torch.nn.Module):
327
+ """Parallel self-attention layer abstract class.
328
+
329
+ Self-attention layer takes input with size [s, b, h]
330
+ and returns output of the same size.
331
+ """
332
+
333
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
334
+ super(SelfAttention, self).__init__()
335
+ self.layer_number = max(1, layer_number)
336
+
337
+ self.projection_size = config.kv_channels * config.num_attention_heads
338
+
339
+ # Per attention head and per partition values.
340
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
341
+ self.num_attention_heads_per_partition = config.num_attention_heads
342
+
343
+ self.multi_query_attention = config.multi_query_attention
344
+ self.qkv_hidden_size = 3 * self.projection_size
345
+ self.original_rope = config.original_rope
346
+ if self.multi_query_attention:
347
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
348
+ self.qkv_hidden_size = (
349
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
350
+ )
351
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
352
+ bias=config.add_bias_linear or config.add_qkv_bias,
353
+ device=device, **_config_to_kwargs(config)
354
+ )
355
+
356
+ self.core_attention = CoreAttention(config, self.layer_number)
357
+
358
+ # Output.
359
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
360
+ device=device, **_config_to_kwargs(config)
361
+ )
362
+
363
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
364
+ if self.multi_query_attention:
365
+ num_attention_heads = self.num_multi_query_groups_per_partition
366
+ else:
367
+ num_attention_heads = self.num_attention_heads_per_partition
368
+ return torch.empty(
369
+ inference_max_sequence_len,
370
+ batch_size,
371
+ num_attention_heads,
372
+ self.hidden_size_per_attention_head,
373
+ dtype=dtype,
374
+ device=device,
375
+ )
376
+
377
+ def forward(
378
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
379
+ ):
380
+ # hidden_states: [b, sq, h]
381
+
382
+ # =================================================
383
+ # Pre-allocate memory for key-values for inference.
384
+ # =================================================
385
+ # =====================
386
+ # Query, Key, and Value
387
+ # =====================
388
+
389
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
390
+ mixed_x_layer = self.query_key_value(hidden_states)
391
+
392
+ if self.multi_query_attention:
393
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
394
+ [
395
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
396
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
397
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
398
+ ],
399
+ dim=-1,
400
+ )
401
+ query_layer = query_layer.view(
402
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
403
+ )
404
+ key_layer = key_layer.view(
405
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
406
+ )
407
+ value_layer = value_layer.view(
408
+ value_layer.size()[:-1]
409
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
410
+ )
411
+ else:
412
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
413
+ (self.num_attention_heads_per_partition,
414
+ 3 * self.hidden_size_per_attention_head)
415
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
416
+
417
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
418
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
419
+
420
+ # [b, sq, np, hn] -> [b, np, sq, hn]
421
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
422
+
423
+ # apply relative positional encoding (rotary embedding)
424
+ if rotary_pos_emb is not None:
425
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
426
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
427
+
428
+ # adjust key and value for inference
429
+ if kv_cache is not None:
430
+ cache_k, cache_v = kv_cache
431
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
432
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
433
+ if use_cache:
434
+ kv_cache = (key_layer, value_layer)
435
+ else:
436
+ kv_cache = None
437
+
438
+ if self.multi_query_attention:
439
+ key_layer = key_layer.unsqueeze(2)
440
+ key_layer = key_layer.expand(
441
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
442
+ )
443
+ key_layer = key_layer.contiguous().view(
444
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
445
+ )
446
+ value_layer = value_layer.unsqueeze(2)
447
+ value_layer = value_layer.expand(
448
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
449
+ )
450
+ value_layer = value_layer.contiguous().view(
451
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
452
+ )
453
+
454
+ # ==================================
455
+ # core attention computation
456
+ # ==================================
457
+
458
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
459
+
460
+ # =================
461
+ # Output. [sq, b, h]
462
+ # =================
463
+
464
+ output = self.dense(context_layer)
465
+
466
+ return output, kv_cache
467
+
468
+
469
+ def _config_to_kwargs(args):
470
+ common_kwargs = {
471
+ "dtype": args.torch_dtype,
472
+ }
473
+ return common_kwargs
474
+
475
+
476
+ class MLP(torch.nn.Module):
477
+ """MLP.
478
+
479
+ MLP will take the input with h hidden state, project it to 4*h
480
+ hidden dimension, perform nonlinear transformation, and project the
481
+ state back into h hidden dimension.
482
+ """
483
+
484
+ def __init__(self, config: ChatGLMConfig, device=None):
485
+ super(MLP, self).__init__()
486
+
487
+ self.add_bias = config.add_bias_linear
488
+
489
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
490
+ self.dense_h_to_4h = nn.Linear(
491
+ config.hidden_size,
492
+ config.ffn_hidden_size * 2,
493
+ bias=self.add_bias,
494
+ device=device,
495
+ **_config_to_kwargs(config)
496
+ )
497
+
498
+ def swiglu(x):
499
+ x = torch.chunk(x, 2, dim=-1)
500
+ return F.silu(x[0]) * x[1]
501
+
502
+ self.activation_func = swiglu
503
+
504
+ # Project back to h.
505
+ self.dense_4h_to_h = nn.Linear(
506
+ config.ffn_hidden_size,
507
+ config.hidden_size,
508
+ bias=self.add_bias,
509
+ device=device,
510
+ **_config_to_kwargs(config)
511
+ )
512
+
513
+ def forward(self, hidden_states):
514
+ # [s, b, 4hp]
515
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
516
+ intermediate_parallel = self.activation_func(intermediate_parallel)
517
+ # [s, b, h]
518
+ output = self.dense_4h_to_h(intermediate_parallel)
519
+ return output
520
+
521
+
522
+ class GLMBlock(torch.nn.Module):
523
+ """A single transformer layer.
524
+
525
+ Transformer layer takes input with size [s, b, h] and returns an
526
+ output of the same size.
527
+ """
528
+
529
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
530
+ super(GLMBlock, self).__init__()
531
+ self.layer_number = layer_number
532
+
533
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
534
+
535
+ self.fp32_residual_connection = config.fp32_residual_connection
536
+
537
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
538
+ # Layernorm on the input data.
539
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
540
+ dtype=config.torch_dtype)
541
+
542
+ # Self attention.
543
+ self.self_attention = SelfAttention(config, layer_number, device=device)
544
+ self.hidden_dropout = config.hidden_dropout
545
+
546
+ # Layernorm on the attention output
547
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
548
+ dtype=config.torch_dtype)
549
+
550
+ # MLP
551
+ self.mlp = MLP(config, device=device)
552
+
553
+ def forward(
554
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
555
+ ):
556
+ # hidden_states: [s, b, h]
557
+
558
+ # Layer norm at the beginning of the transformer layer.
559
+ layernorm_output = self.input_layernorm(hidden_states)
560
+ # Self attention.
561
+ attention_output, kv_cache = self.self_attention(
562
+ layernorm_output,
563
+ attention_mask,
564
+ rotary_pos_emb,
565
+ kv_cache=kv_cache,
566
+ use_cache=use_cache
567
+ )
568
+
569
+ # Residual connection.
570
+ if self.apply_residual_connection_post_layernorm:
571
+ residual = layernorm_output
572
+ else:
573
+ residual = hidden_states
574
+
575
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
576
+ layernorm_input = residual + layernorm_input
577
+
578
+ # Layer norm post the self attention.
579
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
580
+
581
+ # MLP.
582
+ mlp_output = self.mlp(layernorm_output)
583
+
584
+ # Second residual connection.
585
+ if self.apply_residual_connection_post_layernorm:
586
+ residual = layernorm_output
587
+ else:
588
+ residual = layernorm_input
589
+
590
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
591
+ output = residual + output
592
+
593
+ return output, kv_cache
594
+
595
+
596
+ class GLMTransformer(torch.nn.Module):
597
+ """Transformer class."""
598
+
599
+ def __init__(self, config: ChatGLMConfig, device=None):
600
+ super(GLMTransformer, self).__init__()
601
+
602
+ self.fp32_residual_connection = config.fp32_residual_connection
603
+ self.post_layer_norm = config.post_layer_norm
604
+
605
+ # Number of layers.
606
+ self.num_layers = config.num_layers
607
+
608
+ # Transformer layers.
609
+ def build_layer(layer_number):
610
+ return GLMBlock(config, layer_number, device=device)
611
+
612
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
613
+
614
+ if self.post_layer_norm:
615
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
616
+ # Final layer norm before output.
617
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
618
+ dtype=config.torch_dtype)
619
+
620
+ self.gradient_checkpointing = False
621
+
622
+ def _get_layer(self, layer_number):
623
+ return self.layers[layer_number]
624
+
625
+ def forward(
626
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
627
+ use_cache: Optional[bool] = True,
628
+ output_hidden_states: Optional[bool] = False,
629
+ ):
630
+ if not kv_caches:
631
+ kv_caches = [None for _ in range(self.num_layers)]
632
+ presents = () if use_cache else None
633
+ if self.gradient_checkpointing and self.training:
634
+ if use_cache:
635
+ logger.warning_once(
636
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
637
+ )
638
+ use_cache = False
639
+
640
+ all_self_attentions = None
641
+ all_hidden_states = () if output_hidden_states else None
642
+ for index in range(self.num_layers):
643
+ if output_hidden_states:
644
+ all_hidden_states = all_hidden_states + (hidden_states,)
645
+
646
+ layer = self._get_layer(index)
647
+ if self.gradient_checkpointing and self.training:
648
+ layer_ret = torch.utils.checkpoint.checkpoint(
649
+ layer,
650
+ hidden_states,
651
+ attention_mask,
652
+ rotary_pos_emb,
653
+ kv_caches[index],
654
+ use_cache,
655
+ use_reentrant=False
656
+ )
657
+ else:
658
+ layer_ret = layer(
659
+ hidden_states,
660
+ attention_mask,
661
+ rotary_pos_emb,
662
+ kv_cache=kv_caches[index],
663
+ use_cache=use_cache
664
+ )
665
+ hidden_states, kv_cache = layer_ret
666
+ if use_cache:
667
+ presents = presents + (kv_cache,)
668
+
669
+ if output_hidden_states:
670
+ all_hidden_states = all_hidden_states + (hidden_states,)
671
+
672
+ # Final layer norm.
673
+ if self.post_layer_norm:
674
+ hidden_states = self.final_layernorm(hidden_states)
675
+
676
+ return hidden_states, presents, all_hidden_states, all_self_attentions
677
+
678
+
679
+ class ChatGLMPreTrainedModel(PreTrainedModel):
680
+ """
681
+ An abstract class to handle weights initialization and
682
+ a simple interface for downloading and loading pretrained models.
683
+ """
684
+
685
+ is_parallelizable = False
686
+ supports_gradient_checkpointing = True
687
+ config_class = ChatGLMConfig
688
+ base_model_prefix = "transformer"
689
+ _no_split_modules = ["GLMBlock"]
690
+
691
+ def _init_weights(self, module: nn.Module):
692
+ """Initialize the weights."""
693
+ return
694
+
695
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
696
+ batch_size, seq_length = input_ids.shape
697
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
698
+ full_attention_mask.tril_()
699
+ past_length = 0
700
+ if past_key_values:
701
+ past_length = past_key_values[0][0].shape[2]
702
+ if past_length:
703
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
704
+ device=input_ids.device), full_attention_mask), dim=-1)
705
+ if padding_mask is not None:
706
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
707
+ if not past_length and padding_mask is not None:
708
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
709
+ full_attention_mask = (full_attention_mask < 0.5).bool()
710
+ full_attention_mask.unsqueeze_(1)
711
+ return full_attention_mask
712
+
713
+ def get_position_ids(self, input_ids, device):
714
+ batch_size, seq_length = input_ids.shape
715
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
716
+ return position_ids
717
+
718
+ def get_multimodal_position_ids(self, input_ids, device):
719
+ batch_size, seq_length = input_ids.shape
720
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
721
+
722
+ def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
723
+ if not self.supports_gradient_checkpointing:
724
+ raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
725
+
726
+
727
+ class Embedding(torch.nn.Module):
728
+ """Language model embeddings."""
729
+
730
+ def __init__(self, config: ChatGLMConfig, device=None):
731
+ super(Embedding, self).__init__()
732
+
733
+ self.hidden_size = config.hidden_size
734
+ # Word embeddings (parallel).
735
+ self.word_embeddings = nn.Embedding(
736
+ config.padded_vocab_size,
737
+ self.hidden_size,
738
+ dtype=config.torch_dtype,
739
+ device=device
740
+ )
741
+ self.fp32_residual_connection = config.fp32_residual_connection
742
+
743
+ def forward(self, input_ids):
744
+ # Embeddings.
745
+ words_embeddings = self.word_embeddings(input_ids)
746
+ embeddings = words_embeddings
747
+ # If the input flag for fp32 residual connection is set, convert for float.
748
+ if self.fp32_residual_connection:
749
+ embeddings = embeddings.float()
750
+ return embeddings
751
+
752
+
753
+ def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
754
+ if images_list is None or len(images_list) == 0:
755
+ return True
756
+ for image_list in images_list:
757
+ if image_list is not None:
758
+ return False
759
+ return True
760
+
761
+
762
+ class ChatGLMModel(ChatGLMPreTrainedModel):
763
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
764
+ super().__init__(config)
765
+ if empty_init:
766
+ init_method = skip_init
767
+ else:
768
+ init_method = default_init
769
+ init_kwargs = {}
770
+ if device is not None:
771
+ init_kwargs["device"] = device
772
+ self.embedding = init_method(Embedding, config, **init_kwargs)
773
+ self.num_layers = config.num_layers
774
+ self.multi_query_group_num = config.multi_query_group_num
775
+ self.kv_channels = config.kv_channels
776
+
777
+ # Rotary positional embeddings
778
+ self.seq_length = config.seq_length
779
+ rotary_dim = (
780
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
781
+ )
782
+
783
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
784
+ original_impl=config.original_rope,
785
+ device=device, dtype=config.torch_dtype)
786
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
787
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
788
+ dtype=config.torch_dtype, **init_kwargs)
789
+ self.pre_seq_len = config.pre_seq_len
790
+ self.prefix_projection = config.prefix_projection
791
+ if self.pre_seq_len is not None:
792
+ for param in self.parameters():
793
+ param.requires_grad = False
794
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
795
+ self.prefix_encoder = PrefixEncoder(config)
796
+ self.dropout = torch.nn.Dropout(0.1)
797
+
798
+ self.vision = EVA2CLIPModel(config)
799
+
800
+ def get_input_embeddings(self):
801
+ return self.embedding.word_embeddings
802
+
803
+ def set_input_embeddings(self, value):
804
+ self.embedding.word_embeddings = value
805
+
806
+ def get_prompt(self, batch_size, device, dtype=torch.half):
807
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
808
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
809
+ past_key_values = past_key_values.view(
810
+ batch_size,
811
+ self.pre_seq_len,
812
+ self.pre_seq_len,
813
+ self.num_layers * 2,
814
+ self.multi_query_group_num,
815
+ self.kv_channels
816
+ )
817
+ # seq_len, b, nh, hidden_size
818
+ past_key_values = self.dropout(past_key_values)
819
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
820
+ return past_key_values
821
+
822
+ def forward(
823
+ self,
824
+ input_ids: torch.LongTensor = None,
825
+ images: torch.Tensor = None,
826
+ position_ids: Optional[torch.Tensor] = None,
827
+ attention_mask: Optional[torch.BoolTensor] = None,
828
+ full_attention_mask: Optional[torch.BoolTensor] = None,
829
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
830
+ inputs_embeds: Optional[torch.Tensor] = None,
831
+ use_cache: Optional[bool] = None,
832
+ output_hidden_states: Optional[bool] = None,
833
+ return_dict: Optional[bool] = None,
834
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
835
+ """take care of image_encode, position_ids and (attention_mask = None is fine)"""
836
+
837
+ # generate mode with past_key_values. the image features are already mapped
838
+ if past_key_values is None:
839
+ # not allow for inputs_embeds, because we want to process image feature
840
+ assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
841
+ if not is_empty(images): # multi-modality
842
+ image_size: int = self.config.vision_config['image_size']
843
+ patch_size: int = self.config.vision_config['patch_size']
844
+ num_patches = (image_size // patch_size // 2) ** 2
845
+ assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
846
+ inputs_embeds = self.embedding(input_ids)
847
+
848
+ images = images.to(dtype=inputs_embeds.dtype)
849
+ images_features = self.vision(images)
850
+
851
+ if position_ids is None:
852
+ position_ids = self.get_position_ids(input_ids, device=inputs_embeds.device)
853
+ new_input_embeds, new_position_ids = [], []
854
+
855
+ for i in range(len(input_ids)):
856
+ input_id = input_ids[i].tolist()
857
+ boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
858
+ self.config.eoi_token_id)
859
+ assert eoi_token_pos - boi_token_pos == 2
860
+ new_input_embeds.append(torch.cat(
861
+ (inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device), inputs_embeds[i, eoi_token_pos + 1:])))
862
+
863
+ new_position_ids.append(torch.cat(
864
+ (position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
865
+ position_ids[i, eoi_token_pos:])
866
+ ))
867
+ inputs_embeds = torch.stack(new_input_embeds, dim=0)
868
+ position_ids = torch.stack(new_position_ids, dim=0)
869
+
870
+ output_hidden_states = (
871
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
872
+ )
873
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
874
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
875
+
876
+ batch_size, seq_length = input_ids.shape
877
+
878
+ if inputs_embeds is None:
879
+ inputs_embeds = self.embedding(input_ids)
880
+
881
+ if self.pre_seq_len is not None:
882
+ if past_key_values is None:
883
+ past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
884
+ dtype=inputs_embeds.dtype)
885
+ if attention_mask is not None:
886
+ attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
887
+ attention_mask], dim=-1)
888
+
889
+ if full_attention_mask is None:
890
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
891
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
892
+
893
+ # Rotary positional embeddings
894
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
895
+ if position_ids is not None:
896
+ rotary_pos_emb = rotary_pos_emb[position_ids]
897
+ else:
898
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
899
+
900
+ # Run encoder.
901
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
902
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
903
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
904
+ )
905
+
906
+ if not return_dict:
907
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
908
+
909
+ return BaseModelOutputWithPast(
910
+ last_hidden_state=hidden_states,
911
+ past_key_values=presents,
912
+ hidden_states=all_hidden_states,
913
+ attentions=all_self_attentions,
914
+ )
915
+
916
+
917
+ def _history_to_prompt(history, query):
918
+ prompt = ''
919
+ flag = False
920
+ for i, (old_query, response) in enumerate(history):
921
+ prompt += ('<|user|>' if flag else '') + old_query + "<|assistant|>" + response + "<|endoftext|>"
922
+ flag = True
923
+ prompt += '{}{}<|assistant|>'.format('<|user|>' if flag else '', query)
924
+ return prompt
925
+
926
+
927
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
928
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
929
+ super().__init__(config)
930
+
931
+ self.max_sequence_length = config.max_length
932
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
933
+ self.config = config
934
+
935
+ def _update_model_kwargs_for_generation(
936
+ self,
937
+ outputs: ModelOutput,
938
+ model_kwargs: Dict[str, Any],
939
+ is_encoder_decoder: bool = False,
940
+ standardize_cache_format: bool = False,
941
+ ) -> Dict[str, Any]:
942
+ # update past_key_values
943
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
944
+ outputs, standardize_cache_format=standardize_cache_format
945
+ )
946
+
947
+ # update attention mask
948
+ if "attention_mask" in model_kwargs:
949
+ attention_mask = model_kwargs["attention_mask"]
950
+ model_kwargs["attention_mask"] = torch.cat(
951
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
952
+ )
953
+
954
+ # update position ids
955
+ if "position_ids" in model_kwargs:
956
+ position_ids = model_kwargs["position_ids"]
957
+ new_position_id = position_ids[..., -1:].clone()
958
+ new_position_id += 1
959
+ model_kwargs["position_ids"] = torch.cat(
960
+ [position_ids, new_position_id], dim=-1
961
+ )
962
+
963
+ model_kwargs["is_first_forward"] = False
964
+ return model_kwargs
965
+
966
+ def prepare_inputs_for_generation(
967
+ self,
968
+ input_ids: torch.LongTensor,
969
+ images: Optional[torch.Tensor] = None,
970
+ past_key_values: Optional[torch.Tensor] = None,
971
+ attention_mask: Optional[torch.Tensor] = None,
972
+ position_ids: Optional[torch.Tensor] = None,
973
+ use_cache: Optional[bool] = None,
974
+ is_first_forward: bool = True,
975
+ **kwargs
976
+ ) -> dict:
977
+ # only last token for input_ids if past is not None
978
+ if position_ids is None:
979
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
980
+ if not is_first_forward:
981
+ if past_key_values is not None:
982
+ position_ids = position_ids[..., -1:]
983
+ input_ids = input_ids[:, -1:]
984
+ return {
985
+ "input_ids": input_ids,
986
+ "images": images,
987
+ "past_key_values": past_key_values,
988
+ "position_ids": position_ids,
989
+ "attention_mask": attention_mask,
990
+ "return_last_logit": True,
991
+ "use_cache": use_cache
992
+ }
993
+
994
+ def forward(
995
+ self,
996
+ input_ids: Optional[torch.Tensor] = None,
997
+ images: List[List[torch.Tensor]] = None,
998
+ position_ids: Optional[torch.Tensor] = None,
999
+ attention_mask: Optional[torch.Tensor] = None,
1000
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
1001
+ inputs_embeds: Optional[torch.Tensor] = None,
1002
+ labels: Optional[torch.Tensor] = None,
1003
+ use_cache: Optional[bool] = None,
1004
+ output_attentions: Optional[bool] = None,
1005
+ output_hidden_states: Optional[bool] = None,
1006
+ return_dict: Optional[bool] = None,
1007
+ return_last_logit: Optional[bool] = False,
1008
+ ):
1009
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1010
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1011
+
1012
+ transformer_outputs = self.transformer(
1013
+ input_ids=input_ids,
1014
+ images=images,
1015
+ position_ids=position_ids,
1016
+ attention_mask=attention_mask,
1017
+ past_key_values=past_key_values,
1018
+ inputs_embeds=inputs_embeds,
1019
+ use_cache=use_cache,
1020
+ output_hidden_states=output_hidden_states,
1021
+ return_dict=return_dict,
1022
+ )
1023
+
1024
+ hidden_states = transformer_outputs[0]
1025
+ if return_last_logit:
1026
+ hidden_states = hidden_states[:, -1:]
1027
+ lm_logits = self.transformer.output_layer(hidden_states)
1028
+
1029
+ loss = None
1030
+ if labels is not None:
1031
+ lm_logits = lm_logits.to(torch.float32)
1032
+
1033
+ # Shift so that tokens < n predict n
1034
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1035
+ shift_labels = labels[..., 1:].contiguous()
1036
+ # Flatten the tokens
1037
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1038
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1039
+
1040
+ lm_logits = lm_logits.to(hidden_states.dtype)
1041
+ loss = loss.to(hidden_states.dtype)
1042
+
1043
+ if not return_dict:
1044
+ output = (lm_logits,) + transformer_outputs[1:]
1045
+ return ((loss,) + output) if loss is not None else output
1046
+
1047
+ return CausalLMOutputWithPast(
1048
+ loss=loss,
1049
+ logits=lm_logits,
1050
+ past_key_values=transformer_outputs.past_key_values,
1051
+ hidden_states=transformer_outputs.hidden_states,
1052
+ attentions=transformer_outputs.attentions,
1053
+ )
1054
+
1055
+ @staticmethod
1056
+ def _reorder_cache(
1057
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1058
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1059
+ """
1060
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1061
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1062
+ beam_idx at every generation step.
1063
+
1064
+ Output shares the same memory storage as `past`.
1065
+ """
1066
+ return tuple(
1067
+ (
1068
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1069
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1070
+ )
1071
+ for layer_past in past
1072
+ )
1073
+
1074
+ def process_response(self, output, history):
1075
+ content = ""
1076
+ history = deepcopy(history)
1077
+ for response in output.split("<|assistant|>"):
1078
+ if "\n" in response:
1079
+ metadata, content = response.split("\n", maxsplit=1)
1080
+ else:
1081
+ metadata, content = "", response
1082
+ if not metadata.strip():
1083
+ content = content.strip()
1084
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1085
+ content = content.replace("[[训练时间]]", "2023年")
1086
+ else:
1087
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1088
+ if history[0]["role"] == "system" and "tools" in history[0]:
1089
+ parameters = json.loads(content)
1090
+ content = {"name": metadata.strip(), "parameters": parameters}
1091
+ else:
1092
+ content = {"name": metadata.strip(), "content": content}
1093
+ return content, history
1094
+
1095
+ @torch.inference_mode()
1096
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", image=None,
1097
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1098
+ **kwargs):
1099
+ if history is None:
1100
+ history = []
1101
+ if logits_processor is None:
1102
+ logits_processor = LogitsProcessorList()
1103
+ logits_processor.append(InvalidScoreLogitsProcessor())
1104
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1105
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1106
+ message = {"role": role, "content": query}
1107
+ if image is not None:
1108
+ message["image"] = image
1109
+ history.append(message)
1110
+ inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
1111
+ return_tensors="pt", return_dict=True)
1112
+ inputs = inputs.to(self.device)
1113
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
1114
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
1115
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1116
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1117
+ response = tokenizer.decode(outputs)
1118
+ response, history = self.process_response(response, history)
1119
+ return response, history
1120
+
1121
+ @torch.inference_mode()
1122
+ def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", image=None,
1123
+ past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
1124
+ logits_processor=None, return_past_key_values=False, **kwargs):
1125
+ if history is None:
1126
+ history = []
1127
+ if logits_processor is None:
1128
+ logits_processor = LogitsProcessorList()
1129
+ logits_processor.append(InvalidScoreLogitsProcessor())
1130
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
1131
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
1132
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1133
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1134
+ message = {"role": role, "content": "query"}
1135
+ if image is not None:
1136
+ message["image"] = image
1137
+ if past_key_values is None:
1138
+ inputs = tokenizer.apply_chat_template(history + [message],
1139
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
1140
+ return_dict=True)
1141
+ else:
1142
+ inputs = tokenizer.apply_chat_template([message], add_special_tokens=False,
1143
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
1144
+ return_dict=True)
1145
+ inputs = inputs.to(self.device)
1146
+ if past_key_values is not None:
1147
+ past_length = past_key_values[0][0].shape[2]
1148
+ if self.transformer.pre_seq_len is not None:
1149
+ past_length -= self.transformer.pre_seq_len
1150
+ inputs.position_ids += past_length
1151
+ attention_mask = inputs.attention_mask
1152
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1153
+ inputs['attention_mask'] = attention_mask
1154
+ history.append({"role": role, "content": query})
1155
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1156
+ eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
1157
+ **gen_kwargs):
1158
+ if return_past_key_values:
1159
+ outputs, past_key_values = outputs
1160
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1161
+ response = tokenizer.decode(outputs)
1162
+ if response and response[-1] != "�":
1163
+ response, new_history = self.process_response(response, history)
1164
+ if return_past_key_values:
1165
+ yield response, new_history, past_key_values
1166
+ else:
1167
+ yield response, new_history
1168
+
1169
+ @torch.inference_mode()
1170
+ def stream_generate(
1171
+ self,
1172
+ input_ids,
1173
+ generation_config: Optional[GenerationConfig] = None,
1174
+ logits_processor: Optional[LogitsProcessorList] = None,
1175
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1176
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1177
+ return_past_key_values=False,
1178
+ **kwargs,
1179
+ ):
1180
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1181
+
1182
+ if generation_config is None:
1183
+ generation_config = self.generation_config
1184
+ generation_config = copy.deepcopy(generation_config)
1185
+ model_kwargs = generation_config.update(**kwargs)
1186
+ model_kwargs["use_cache"] = generation_config.use_cache
1187
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1188
+
1189
+ if isinstance(eos_token_id, int):
1190
+ eos_token_id = [eos_token_id]
1191
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1192
+
1193
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1194
+ if has_default_max_length and generation_config.max_new_tokens is None:
1195
+ warnings.warn(
1196
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1197
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1198
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1199
+ UserWarning,
1200
+ )
1201
+ elif generation_config.max_new_tokens is not None:
1202
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1203
+ if not has_default_max_length:
1204
+ logger.warn(
1205
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1206
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1207
+ "Please refer to the documentation for more information. "
1208
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1209
+ UserWarning,
1210
+ )
1211
+
1212
+ if input_ids_seq_length >= generation_config.max_length:
1213
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1214
+ logger.warning(
1215
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1216
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1217
+ " increasing `max_new_tokens`."
1218
+ )
1219
+
1220
+ # 2. Set generation parameters if not already defined
1221
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1222
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1223
+
1224
+ logits_processor = self._get_logits_processor(
1225
+ generation_config=generation_config,
1226
+ input_ids_seq_length=input_ids_seq_length,
1227
+ encoder_input_ids=input_ids,
1228
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1229
+ logits_processor=logits_processor,
1230
+ )
1231
+
1232
+ stopping_criteria = self._get_stopping_criteria(
1233
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1234
+ )
1235
+ logits_warper = self._get_logits_warper(generation_config)
1236
+
1237
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1238
+ scores = None
1239
+ while True:
1240
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1241
+ # forward pass to get next token
1242
+ outputs = self(
1243
+ **model_inputs,
1244
+ return_dict=True,
1245
+ output_attentions=False,
1246
+ output_hidden_states=False,
1247
+ )
1248
+
1249
+ next_token_logits = outputs.logits[:, -1, :]
1250
+
1251
+ # pre-process distribution
1252
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1253
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1254
+
1255
+ # sample
1256
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1257
+ if generation_config.do_sample:
1258
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1259
+ else:
1260
+ next_tokens = torch.argmax(probs, dim=-1)
1261
+ # update generated ids, model inputs, and length for next step
1262
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1263
+ model_kwargs = self._update_model_kwargs_for_generation(
1264
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1265
+ )
1266
+ unfinished_sequences = unfinished_sequences.mul(
1267
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
1268
+ )
1269
+ if return_past_key_values:
1270
+ yield input_ids, outputs.past_key_values
1271
+ else:
1272
+ yield input_ids
1273
+ # stop when each sentence is finished, or if we exceed the maximum length
1274
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1275
+ break
1276
+
1277
+
1278
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1279
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1280
+ super().__init__(config)
1281
+
1282
+ self.num_labels = config.num_labels
1283
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1284
+
1285
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
1286
+ if config.classifier_dropout is not None:
1287
+ self.dropout = nn.Dropout(config.classifier_dropout)
1288
+ else:
1289
+ self.dropout = None
1290
+ self.config = config
1291
+
1292
+ def forward(
1293
+ self,
1294
+ input_ids: Optional[torch.LongTensor] = None,
1295
+ position_ids: Optional[torch.LongTensor] = None,
1296
+ attention_mask: Optional[torch.Tensor] = None,
1297
+ full_attention_mask: Optional[torch.Tensor] = None,
1298
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1299
+ inputs_embeds: Optional[torch.LongTensor] = None,
1300
+ labels: Optional[torch.LongTensor] = None,
1301
+ use_cache: Optional[bool] = None,
1302
+ output_hidden_states: Optional[bool] = None,
1303
+ return_dict: Optional[bool] = None,
1304
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1305
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1306
+
1307
+ transformer_outputs = self.transformer(
1308
+ input_ids=input_ids,
1309
+ position_ids=position_ids,
1310
+ attention_mask=attention_mask,
1311
+ full_attention_mask=full_attention_mask,
1312
+ past_key_values=past_key_values,
1313
+ inputs_embeds=inputs_embeds,
1314
+ use_cache=use_cache,
1315
+ output_hidden_states=output_hidden_states,
1316
+ return_dict=return_dict,
1317
+ )
1318
+
1319
+ hidden_states = transformer_outputs[0]
1320
+ pooled_hidden_states = hidden_states[-1]
1321
+ if self.dropout is not None:
1322
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1323
+ logits = self.classifier_head(pooled_hidden_states)
1324
+
1325
+ loss = None
1326
+ if labels is not None:
1327
+ if self.config.problem_type is None:
1328
+ if self.num_labels == 1:
1329
+ self.config.problem_type = "regression"
1330
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1331
+ self.config.problem_type = "single_label_classification"
1332
+ else:
1333
+ self.config.problem_type = "multi_label_classification"
1334
+
1335
+ if self.config.problem_type == "regression":
1336
+ loss_fct = MSELoss()
1337
+ if self.num_labels == 1:
1338
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1339
+ else:
1340
+ loss = loss_fct(logits.float(), labels)
1341
+ elif self.config.problem_type == "single_label_classification":
1342
+ loss_fct = CrossEntropyLoss()
1343
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1344
+ elif self.config.problem_type == "multi_label_classification":
1345
+ loss_fct = BCEWithLogitsLoss()
1346
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1347
+
1348
+ if not return_dict:
1349
+ output = (logits,) + transformer_outputs[1:]
1350
+ return ((loss,) + output) if loss is not None else output
1351
+
1352
+ return SequenceClassifierOutputWithPast(
1353
+ loss=loss,
1354
+ logits=logits,
1355
+ past_key_values=transformer_outputs.past_key_values,
1356
+ hidden_states=transformer_outputs.hidden_states,
1357
+ attentions=transformer_outputs.attentions,
1358
+ )
tokenization_chatglm.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ import torch
7
+ from torch import TensorType
8
+ from typing import List, Optional, Union, Dict, Any
9
+ from torchvision import transforms
10
+ from transformers import PreTrainedTokenizer
11
+ from transformers.utils import logging, PaddingStrategy
12
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
13
+
14
+
15
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
16
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
17
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
18
+
19
+ def __init__(
20
+ self,
21
+ vocab_file,
22
+ padding_side="left",
23
+ clean_up_tokenization_spaces=False,
24
+ encode_special_tokens=False,
25
+ image_size=None,
26
+ **kwargs
27
+ ):
28
+ self.name = "GLM4Tokenizer"
29
+ self.vocab_file = vocab_file
30
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
31
+ self.pat_str = re.compile(pat_str)
32
+ self.encode_special_tokens = encode_special_tokens
33
+ self.image_size = image_size
34
+
35
+ mergeable_ranks = {}
36
+ with open(vocab_file) as f:
37
+ for line in f:
38
+ token, rank = line.strip().split()
39
+ rank = int(rank)
40
+ token = base64.b64decode(token)
41
+ mergeable_ranks[token] = rank
42
+
43
+ self.mergeable_ranks = mergeable_ranks
44
+
45
+ self.tokenizer = tiktoken.Encoding(
46
+ name="my_tokenizer",
47
+ pat_str=pat_str,
48
+ mergeable_ranks=mergeable_ranks,
49
+ special_tokens={}
50
+ )
51
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
52
+ self.n_words = len(self.decoder)
53
+
54
+ super().__init__(
55
+ padding_side=padding_side,
56
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
57
+ **kwargs
58
+ )
59
+
60
+ @property
61
+ def vocab_size(self):
62
+ return self.n_words
63
+
64
+ def get_vocab(self):
65
+ """ Returns vocab as a dict """
66
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
67
+ vocab.update(self.added_tokens_encoder)
68
+ return vocab
69
+
70
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
71
+ """
72
+ Converts a sequence of tokens in a single string.
73
+ """
74
+ text = ""
75
+ temp = b""
76
+ for t in tokens:
77
+ if isinstance(t, str):
78
+ if temp:
79
+ text += temp.decode("utf-8", errors="replace")
80
+ temp = b""
81
+ text += t
82
+ elif isinstance(t, bytes):
83
+ temp += t
84
+ else:
85
+ raise TypeError("token should only be of type types or str")
86
+ if temp:
87
+ text += temp.decode("utf-8", errors="replace")
88
+ return text
89
+
90
+ def _tokenize(self, text, **kwargs):
91
+ tokens = []
92
+ ids = self.tokenizer.encode(text)
93
+ for t in ids:
94
+ tokens.append(self.decoder[t])
95
+ return tokens
96
+
97
+ def _convert_token_to_id(self, token):
98
+ """ Converts a token (str) in an id using the vocab. """
99
+ return self.mergeable_ranks[token]
100
+
101
+ def _convert_id_to_token(self, index):
102
+ """Converts an index (integer) in a token (str) using the vocab."""
103
+ return self.decoder.get(index, "")
104
+
105
+ def save_vocabulary(self, save_directory, filename_prefix=None):
106
+ """
107
+ Save the vocabulary and special tokens file to a directory.
108
+
109
+ Args:
110
+ save_directory (`str`):
111
+ The directory in which to save the vocabulary.
112
+ filename_prefix (`str`, *optional*):
113
+ An optional prefix to add to the named of the saved files.
114
+
115
+ Returns:
116
+ `Tuple(str)`: Paths to the files saved.
117
+ """
118
+ if os.path.isdir(save_directory):
119
+ vocab_file = os.path.join(
120
+ save_directory, self.vocab_files_names["vocab_file"]
121
+ )
122
+ else:
123
+ vocab_file = save_directory
124
+
125
+ with open(self.vocab_file, 'rb') as fin:
126
+ proto_str = fin.read()
127
+
128
+ with open(vocab_file, "wb") as writer:
129
+ writer.write(proto_str)
130
+
131
+ return (vocab_file,)
132
+
133
+ def get_prefix_tokens(self):
134
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
135
+ return prefix_tokens
136
+
137
+ def build_single_message(self, role, metadata, message, tokenize=True, message_prefix=None):
138
+ assert role in ["system", "user", "assistant", "observation"], role
139
+ if tokenize:
140
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
141
+ disallowed_special=())
142
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
143
+ if message_prefix is not None:
144
+ message_tokens = message_prefix + message_tokens
145
+ tokens = role_tokens + message_tokens
146
+ return tokens
147
+ else:
148
+ return str(f"<|{role}|>{metadata}\n{message}")
149
+
150
+ def apply_chat_template(
151
+ self,
152
+ conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
153
+ add_generation_prompt: bool = False,
154
+ tokenize: bool = True,
155
+ padding: bool = False,
156
+ truncation: bool = False,
157
+ max_length: Optional[int] = None,
158
+ return_tensors: Optional[Union[str, TensorType]] = None,
159
+ return_dict: bool = False,
160
+ tokenizer_kwargs: Optional[Dict[str, Any]] = None,
161
+ add_special_tokens: bool = True,
162
+ **kwargs,
163
+ ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
164
+
165
+ if return_dict and not tokenize:
166
+ raise ValueError(
167
+ "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
168
+ "of tokenizer outputs to return."
169
+ )
170
+
171
+ def handle_single_conversation(conversation):
172
+ input_ids = self.get_prefix_tokens() if add_special_tokens else []
173
+ input_message = "[gMASK]<sop>" if add_special_tokens else ""
174
+ input_image = None
175
+ transform = transforms.Compose(
176
+ [
177
+ transforms.Resize(
178
+ (self.image_size, self.image_size), interpolation=transforms.InterpolationMode.BICUBIC
179
+ ),
180
+ transforms.ToTensor(),
181
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
182
+ ]
183
+ )
184
+ for item in conversation:
185
+ if item.get("tools"):
186
+ tools = item["tools"]
187
+ content = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
188
+ for tool in tools:
189
+ if tool["type"] == "function":
190
+ function = tool["function"]
191
+ content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
192
+ content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
193
+ elif tool["type"] == "python":
194
+ content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
195
+ elif tool["type"] == "simple_browser":
196
+ content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
197
+ elif tool["type"] == "cogview":
198
+ content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
199
+ else:
200
+ raise NotImplementedError(f"Unknown tool type {tool['type']}")
201
+ input = self.build_single_message("system", "", content, tokenize=tokenize)
202
+ if tokenize:
203
+ input_ids.extend(input)
204
+ else:
205
+ input_message += input
206
+ message = ""
207
+ message_prefix = None
208
+ if item.get("image"):
209
+ assert input_image is None, "Multiple images are not supported"
210
+ input_image = transform(item["image"])
211
+ message_prefix = self.convert_tokens_to_ids(
212
+ ["<|begin_of_image|>", "<|endoftext|>", "<|end_of_image|>"])
213
+ if item.get("content"):
214
+ message += item["content"]
215
+ if message or message_prefix:
216
+ input = self.build_single_message(
217
+ item["role"],
218
+ item.get("metadata", ""),
219
+ message,
220
+ tokenize=tokenize,
221
+ message_prefix=message_prefix
222
+ )
223
+ if tokenize:
224
+ input_ids.extend(input)
225
+ else:
226
+ input_message += input
227
+ if add_generation_prompt:
228
+ if tokenize:
229
+ input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
230
+ else:
231
+ input_message += "<|assistant|>"
232
+ return {"input": input_ids if tokenize else input_message, "image": input_image}
233
+
234
+ # Main logic to handle different conversation formats
235
+ if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
236
+ result = handle_single_conversation(conversation)
237
+ input_ids = result["input"]
238
+ input_images = [result["image"]]
239
+ elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
240
+ results = [handle_single_conversation(c) for c in conversation]
241
+ input_ids = [item["input"] for item in results]
242
+ input_images = [item["image"] for item in results]
243
+ elif hasattr(conversation, "messages"):
244
+ result = handle_single_conversation(conversation.messages)
245
+ input_ids = result["input"]
246
+ input_images = [result["image"]]
247
+ else:
248
+ raise ValueError("Invalid conversation format")
249
+
250
+ if tokenize:
251
+ output = self.batch_encode_plus(
252
+ [input_ids] if isinstance(input_ids[0], int) else input_ids,
253
+ padding=padding,
254
+ truncation=truncation,
255
+ max_length=max_length,
256
+ return_tensors=return_tensors,
257
+ is_split_into_words=True,
258
+ add_special_tokens=False
259
+ )
260
+ if return_dict:
261
+ found_image = False
262
+ for image in input_images:
263
+ if image is not None:
264
+ found_image = True
265
+ break
266
+ if found_image:
267
+ output["images"] = torch.stack(input_images)
268
+ return output
269
+ else:
270
+ return output["input_ids"]
271
+ else:
272
+ return input_ids
273
+
274
+
275
+ def build_inputs_with_special_tokens(
276
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
277
+ ) -> List[int]:
278
+ """
279
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
280
+ adding special tokens. A BERT sequence has the following format:
281
+
282
+ - single sequence: `[CLS] X [SEP]`
283
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
284
+
285
+ Args:
286
+ token_ids_0 (`List[int]`):
287
+ List of IDs to which the special tokens will be added.
288
+ token_ids_1 (`List[int]`, *optional*):
289
+ Optional second list of IDs for sequence pairs.
290
+
291
+ Returns:
292
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
293
+ """
294
+ prefix_tokens = self.get_prefix_tokens()
295
+ token_ids_0 = prefix_tokens + token_ids_0
296
+ if token_ids_1 is not None:
297
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
298
+ return token_ids_0
299
+
300
+ def _pad(
301
+ self,
302
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
303
+ max_length: Optional[int] = None,
304
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
305
+ pad_to_multiple_of: Optional[int] = None,
306
+ return_attention_mask: Optional[bool] = None,
307
+ ) -> dict:
308
+ """
309
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
310
+
311
+ Args:
312
+ encoded_inputs:
313
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
314
+ max_length: maximum length of the returned list and optionally padding length (see below).
315
+ Will truncate by taking into account the special tokens.
316
+ padding_strategy: PaddingStrategy to use for padding.
317
+
318
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
319
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
320
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
321
+ The tokenizer padding sides are defined in self.padding_side:
322
+
323
+ - 'left': pads on the left of the sequences
324
+ - 'right': pads on the right of the sequences
325
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
326
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
327
+ `>= 7.5` (Volta).
328
+ return_attention_mask:
329
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
330
+ """
331
+ # Load from model defaults
332
+ assert self.padding_side == "left"
333
+
334
+ required_input = encoded_inputs[self.model_input_names[0]]
335
+ seq_length = len(required_input)
336
+
337
+ if padding_strategy == PaddingStrategy.LONGEST:
338
+ max_length = len(required_input)
339
+
340
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
341
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
342
+
343
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
344
+
345
+ # Initialize attention mask if not present.
346
+ if "attention_mask" not in encoded_inputs:
347
+ encoded_inputs["attention_mask"] = [1] * seq_length
348
+
349
+ if "position_ids" not in encoded_inputs:
350
+ encoded_inputs["position_ids"] = list(range(seq_length))
351
+
352
+ if needs_to_be_padded:
353
+ difference = max_length - len(required_input)
354
+
355
+ if "attention_mask" in encoded_inputs:
356
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
357
+ if "position_ids" in encoded_inputs:
358
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
359
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
360
+
361
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLM4Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "added_tokens_decoder": {
9
+ "151329": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false,
15
+ "special": true
16
+ },
17
+ "151330": {
18
+ "content": "[MASK]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false,
23
+ "special": true
24
+ },
25
+ "151331": {
26
+ "content": "[gMASK]",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false,
31
+ "special": true
32
+ },
33
+ "151332": {
34
+ "content": "[sMASK]",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false,
39
+ "special": true
40
+ },
41
+ "151333": {
42
+ "content": "<sop>",
43
+ "lstrip": false,
44
+ "normalized": false,
45
+ "rstrip": false,
46
+ "single_word": false,
47
+ "special": true
48
+ },
49
+ "151334": {
50
+ "content": "<eop>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false,
55
+ "special": true
56
+ },
57
+ "151335": {
58
+ "content": "<|system|>",
59
+ "lstrip": false,
60
+ "normalized": false,
61
+ "rstrip": false,
62
+ "single_word": false,
63
+ "special": true
64
+ },
65
+ "151336": {
66
+ "content": "<|user|>",
67
+ "lstrip": false,
68
+ "normalized": false,
69
+ "rstrip": false,
70
+ "single_word": false,
71
+ "special": true
72
+ },
73
+ "151337": {
74
+ "content": "<|assistant|>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false,
79
+ "special": true
80
+ },
81
+ "151338": {
82
+ "content": "<|observation|>",
83
+ "lstrip": false,
84
+ "normalized": false,
85
+ "rstrip": false,
86
+ "single_word": false,
87
+ "special": true
88
+ },
89
+ "151339": {
90
+ "content": "<|begin_of_image|>",
91
+ "lstrip": false,
92
+ "normalized": false,
93
+ "rstrip": false,
94
+ "single_word": false,
95
+ "special": true
96
+ },
97
+ "151340": {
98
+ "content": "<|end_of_image|>",
99
+ "lstrip": false,
100
+ "normalized": false,
101
+ "rstrip": false,
102
+ "single_word": false,
103
+ "special": true
104
+ },
105
+ "151341": {
106
+ "content": "<|begin_of_video|>",
107
+ "lstrip": false,
108
+ "normalized": false,
109
+ "rstrip": false,
110
+ "single_word": false,
111
+ "special": true
112
+ },
113
+ "151342": {
114
+ "content": "<|end_of_video|>",
115
+ "lstrip": false,
116
+ "normalized": false,
117
+ "rstrip": false,
118
+ "single_word": false,
119
+ "special": true
120
+ }
121
+ },
122
+ "additional_special_tokens": ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
123
+ "<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
124
+ "<|begin_of_video|>", "<|end_of_video|>"],
125
+ "clean_up_tokenization_spaces": false,
126
+ "do_lower_case": false,
127
+ "eos_token": "<|endoftext|>",
128
+ "pad_token": "<|endoftext|>",
129
+ "model_max_length": 1000000000000000019884624838656,
130
+ "padding_side": "left",
131
+ "remove_space": false,
132
+ "tokenizer_class": "ChatGLM4Tokenizer",
133
+ "image_size": 1120
134
+ }
visual.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from argparse import Namespace
4
+ import torch.nn.functional as F
5
+ from transformers.activations import ACT2FN
6
+ import math
7
+ from torch.nn import LayerNorm
8
+
9
+ def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True):
10
+ if scaling_attention_score:
11
+ query_layer = query_layer / math.sqrt(query_layer.shape[-1])
12
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
13
+
14
+ attention_probs = F.softmax(attention_scores, dim=-1)
15
+
16
+ context_layer = torch.matmul(attention_probs, value_layer)
17
+ return context_layer
18
+
19
+ def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True):
20
+ if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score:
21
+ # Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
22
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
23
+ query_layer, key_layer, value_layer,
24
+ attn_mask=None,
25
+ dropout_p=0.,
26
+ is_causal=False
27
+ )
28
+ return attn_output
29
+ else:
30
+ return standard_attention(
31
+ query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score
32
+ )
33
+
34
+ class PatchEmbedding(nn.Module):
35
+ def __init__(self, config):
36
+ super().__init__()
37
+ self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
38
+ self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
39
+ self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
40
+
41
+ def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
42
+ x = self.proj(images)
43
+ x = x.flatten(2).transpose(1, 2)
44
+ cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
45
+ x = torch.cat((cls_token, x), dim=1)
46
+ x += self.position_embedding.weight.unsqueeze(0)
47
+ return x
48
+
49
+
50
+ class Attention(nn.Module):
51
+ def __init__(self, config):
52
+ super().__init__()
53
+ self.num_heads = config.num_heads
54
+ head_dim = config.hidden_size // config.num_heads
55
+ self.scale = head_dim ** -0.5
56
+ self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
57
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
58
+ self.output_dropout = torch.nn.Dropout(config.dropout_prob)
59
+
60
+ def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
61
+ B, L, _ = x.shape
62
+ qkv = self.query_key_value(x)
63
+ qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D
64
+ q, k, v = qkv[0], qkv[1], qkv[2]
65
+
66
+ out = attention_fn_default(
67
+ q, k, v
68
+ )
69
+ output = self.dense(out.transpose(1, 2).reshape(B, L, -1))
70
+ output = self.output_dropout(output)
71
+ return output
72
+
73
+ def attention(self, q, k, v):
74
+ attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
75
+ attn_weights = attn_weights.softmax(dim=-1)
76
+ output = torch.matmul(attn_weights, v)
77
+ return output
78
+
79
+
80
+ class MLP(nn.Module):
81
+ def __init__(self, config):
82
+ super().__init__()
83
+ self.config = config
84
+ self.activation_fn = ACT2FN[config.hidden_act]
85
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
86
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
87
+
88
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
89
+ x = self.fc1(x)
90
+ x = self.activation_fn(x)
91
+ x = self.fc2(x)
92
+ return x
93
+
94
+
95
+ class TransformerLayer(nn.Module):
96
+ def __init__(self, config):
97
+ super().__init__()
98
+ self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
99
+ self.attention = Attention(config)
100
+ self.mlp = MLP(config)
101
+ self.post_attention_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
102
+
103
+ def forward(self, hidden_states):
104
+ attention_input = hidden_states
105
+ attention_output = self.input_layernorm(self.attention(attention_input))
106
+ hidden_states = attention_input + attention_output
107
+ mlp_input = hidden_states
108
+ mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
109
+ output = mlp_input + mlp_output
110
+ return output
111
+
112
+
113
+ class Transformer(nn.Module):
114
+ def __init__(self, config):
115
+ super().__init__()
116
+ self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
117
+
118
+ def forward(self, hidden_states):
119
+ for layer_module in self.layers:
120
+ hidden_states = layer_module(hidden_states)
121
+ return hidden_states
122
+
123
+
124
+ class GLU(nn.Module):
125
+ def __init__(self, config, in_features):
126
+ super().__init__()
127
+ self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
128
+ self.norm1 = nn.LayerNorm(config.hidden_size)
129
+ self.act1 = nn.GELU()
130
+ self.act2 = nn.functional.silu
131
+ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
132
+ self.gate_proj = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False)
133
+ self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=False)
134
+
135
+ def forward(self, x):
136
+ x = self.linear_proj(x)
137
+ x = self.act1(self.norm1(x))
138
+ x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
139
+ x = self.dense_4h_to_h(x)
140
+ return x
141
+
142
+
143
+ class EVA2CLIPModel(nn.Module):
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ vision_config = Namespace(**config.vision_config)
147
+ self.patch_embedding = PatchEmbedding(vision_config)
148
+ self.transformer = Transformer(vision_config)
149
+ self.linear_proj = GLU(config, in_features=config.hidden_size)
150
+ self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=config.hidden_size, kernel_size=2, stride=2)
151
+ self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
152
+ self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
153
+ self.scaling_factor = vision_config.scaling_factor
154
+
155
+ def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
156
+ x = self.patch_embedding(images)
157
+ x = self.transformer(x)
158
+ x = x[:, 1:]
159
+
160
+ b, s, h = x.shape
161
+ grid_size = int(s**0.5)
162
+ x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
163
+ x = self.conv(x)
164
+
165
+ x = x.flatten(2).transpose(1, 2)
166
+ x = self.linear_proj(x)
167
+ boi = self.boi.expand(x.shape[0], -1, -1)
168
+ eoi = self.eoi.expand(x.shape[0], -1, -1)
169
+ x = torch.cat((boi, x, eoi), dim=1)
170
+ x = x / self.scaling_factor
171
+ return x