File size: 2,098 Bytes
f045e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: wiki_asp-educational_institution_7476_bart-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wiki_asp-educational_institution_7476_bart-base
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6483
- Rouge1: 0.1554
- Rouge2: 0.0598
- Rougel: 0.1308
- Rougelsum: 0.1308
- Gen Len: 19.1331
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.81 | 500 | 2.8696 | 0.1509 | 0.054 | 0.1261 | 0.126 | 19.2999 |
| No log | 3.63 | 1000 | 2.7162 | 0.1551 | 0.0574 | 0.1292 | 0.1293 | 19.1107 |
| No log | 5.44 | 1500 | 2.6720 | 0.154 | 0.0588 | 0.1297 | 0.1295 | 19.071 |
| 2.9542 | 7.26 | 2000 | 2.6582 | 0.1564 | 0.0602 | 0.1312 | 0.1312 | 19.1116 |
| 2.9542 | 9.07 | 2500 | 2.6483 | 0.1554 | 0.0598 | 0.1308 | 0.1308 | 19.1331 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|