File size: 1,706 Bytes
d768811 6b675a8 d768811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
base_model: bert-base-multilingual-cased
model-index:
- name: geocoder_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# geocoder_model
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2632
- Accuracy: {'accuracy': 0.9005447386872337}
- F1: {'f1': 0.8323636363636362}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|
| 0.26 | 1.0 | 4636 | 0.2405 | {'accuracy': 0.8972547327544361} | {'f1': 0.827866630523177} |
| 0.2069 | 2.0 | 9272 | 0.2632 | {'accuracy': 0.9005447386872337} | {'f1': 0.8323636363636362} |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Tokenizers 0.13.2
|