hafidhsoekma's picture
Update README.md
6c03a2b
|
raw
history blame
10.3 kB
metadata
license: cc-by-nc-4.0
datasets:
  - MBZUAI/Bactrian-X
language:
  - id
  - en
tags:
  - qlora
  - wizardlm
  - uncensored
  - instruct
  - chat
  - alpaca
  - indonesia

DukunLM V1.0 - Indonesian Language Model πŸ§™β€β™‚οΈ

πŸš€ Welcome to the DukunLM V1.0 repository! DukunLM V1.0 is an open-source language model trained to generate Indonesian text using the power of AI. DukunLM, meaning "WizardLM" in Indonesian, is here to revolutionize language generation 🌟. This is an updated version from azale-ai/DukunLM-Uncensored-7B with full model release, not only adapter model like before πŸ‘½.

Model Details

⚠️ Warning: DukunLM is an uncensored model without filters or alignment. Please use it responsibly as it may contain errors, cultural biases, and potentially offensive content. ⚠️

Installation

To use DukunLM, ensure that PyTorch has been installed and that you have an Nvidia GPU (or use Google Colab). After that you need to install the required dependencies:

pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/peft.git
pip install -U git+https://github.com/huggingface/accelerate.git
pip install -U bitsandbytes==0.39.0 einops==0.6.1 sentencepiece

How to Use

Normal Model

Stream Output

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model = AutoModelForCausalLM.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored")
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored")
streamer = TextStreamer(tokenizer)

instruction_prompt = "Jelaskan mengapa air penting bagi kehidupan manusia."
input_prompt = ""

if not input_prompt:
  prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt)

else:
  prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt, input=input_prompt)

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
_ = model.generate(
    inputs=inputs.input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)

No Stream Output

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored")
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored")

instruction_prompt = "Jelaskan mengapa air penting bagi kehidupan manusia."
input_prompt = ""

if not input_prompt:
  prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt)

else:
  prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt, input=input_prompt)

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
    inputs=inputs.input_ids,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Quantize Model

Stream Output

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer

model = AutoModelForCausalLM.from_pretrained(
    "azale-ai/DukunLM-7B-V1.0-Uncensored-sharded",
    load_in_4bit=True,
    torch_dtype=torch.float32,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
)
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored-sharded")
streamer = TextStreamer(tokenizer)

instruction_prompt = "Jelaskan mengapa air penting bagi kehidupan manusia."
input_prompt = ""

if not input_prompt:
  prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt)

else:
  prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt, input=input_prompt)

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
_ = model.generate(
    inputs=inputs.input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)

No Stream Output

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model = AutoModelForCausalLM.from_pretrained(
    "azale-ai/DukunLM-7B-V1.0-Uncensored-sharded",
    load_in_4bit=True,
    torch_dtype=torch.float32,
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
        bnb_4bit_compute_dtype=torch.float16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
)
tokenizer = AutoTokenizer.from_pretrained("azale-ai/DukunLM-7B-V1.0-Uncensored-sharded")

instruction_prompt = "Jelaskan mengapa air penting bagi kehidupan manusia."
input_prompt = ""

if not input_prompt:
  prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt)

else:
  prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
"""
  prompt = prompt.format(instruction=instruction_prompt, input=input_prompt)

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
    inputs=inputs.input_ids,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048, temperature=0.7,
    do_sample=True, top_k=4, top_p=0.95
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Benchmark

Coming soon, stay tune πŸ™‚πŸ™‚.

Limitations

  • The base model language is English and fine-tuned to Indonesia
  • Cultural and contextual biases

License

DukunLM is licensed under the Creative Commons NonCommercial (CC BY-NC 4.0) license.

Contributing

We welcome contributions to enhance and improve DukunLM. If you have any suggestions or find any issues, please feel free to open an issue or submit a pull request. Also we're open to sponsor for compute power.

Contact Us

contact@azale.ai