File size: 3,875 Bytes
2e9bca8
 
 
 
 
 
 
2ac1e52
2e9bca8
 
 
2ac1e52
2e9bca8
 
 
 
 
 
 
 
 
 
 
 
5d3602a
 
 
 
 
2ac1e52
 
5d3602a
 
 
 
 
 
 
2ac1e52
5d3602a
 
 
 
2ac1e52
 
5d3602a
 
 
 
 
 
 
2ac1e52
5d3602a
 
 
 
2ac1e52
 
5d3602a
 
 
 
 
 
 
2ac1e52
5d3602a
 
 
 
2ac1e52
 
5d3602a
 
 
 
 
 
 
2ac1e52
5d3602a
 
 
2e9bca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ac1e52
2e9bca8
 
 
2ac1e52
2e9bca8
 
 
5d3602a
2e9bca8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- zgh
- kab
- shi
- rif
- tzm
- shy
license: cc-by-4.0
library_name: nemo
datasets:
- mozilla-foundation/common_voice_18_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- FastConformer
- Transformer
- NeMo
- pytorch
model-index:
- name: stt_zgh_fastconformer_ctc_small
  results:
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 18.0
      type: mozilla-foundation/common_voice_18_0
      config: zgh
      split: test
      args:
        language: zgh
    metrics:
    - name: Test WER
      type: wer
      value: 64.17
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 18.0
      type: mozilla-foundation/common_voice_18_0
      config: zgh
      split: test
      args:
        language: zgh
    metrics:
    - name: Test CER
      type: cer
      value: 21.54
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 18.0
      type: mozilla-foundation/common_voice_18_0
      config: kab
      split: test
      args:
        language: kab
    metrics:
    - name: Test WER
      type: wer
      value: 34.87
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 18.0
      type: mozilla-foundation/common_voice_18_0
      config: kab
      split: test
      args:
        language: kab
    metrics:
    - name: Test CER
      type: cer
      value: 13.11
metrics:
- wer
- cer
pipeline_tag: automatic-speech-recognition
---
## Model Overview

<DESCRIBE IN ONE LINE THE MODEL AND ITS USE>

## NVIDIA NeMo: Training

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['asr']
```

## How to Use this Model

The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("ayymen/stt_zgh_fastconformer_ctc_small")
```

### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```

### Transcribing many audio files

```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py  pretrained_name="ayymen/stt_zgh_fastconformer_ctc_small"  audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```

### Input

This model accepts 16000 KHz Mono-channel Audio (wav files) as input.

### Output

This model provides transcribed speech as a string for a given audio sample.

## Model Architecture

<ADD SOME INFORMATION ABOUT THE ARCHITECTURE>

## Training

The model was fine-tuned from an older checkpoint on a NVIDIA GeForce RTX 4050 Laptop GPU.

### Datasets

Common Voice 18 *kab* and *zgh* splits, Tatoeba (kab, ber, shy), and bible readings in Tachelhit and Tarifit.

## Performance

Metrics are computed on the cleaned, non-punctuated test sets of *zgh* and *kab* (converted to Tifinagh).

## Limitations

<DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>

Eg:
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.


## References

<ADD ANY REFERENCES HERE AS NEEDED>

[1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)