File size: 4,498 Bytes
c65ce61 9bab633 c65ce61 9bab633 f33a6e9 9bab633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: models/auto-improving-run
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
# This file is used by the training script in train.ipynb. You can read more about
# the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl.
# One of the parameters you might want to play around with is `num_epochs`: if you have a
# smaller dataset size, making that large can have good results.
base_model: meta-llama/Llama-2-7b-hf
base_model_config: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: ./resources/train_aug.jsonl
type: alpaca
dataset_prepared_path: ./resources/last_run_prepared
val_set_size: 0.05
output_dir: ./models/auto-improving-run
sequence_len: 4096
sample_packing: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out.
wandb_project: google-boolq
wandb_entity:
wandb_watch:
wandb_run_id: auto-improving-run
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
eval_steps: 20
save_steps: 60
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# models/auto-improving-run
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the google/boolq dataset with a research platform that iterates on the model inaccuracies, gets refined by expert, and re-performs training.
It achieves the following results on the evaluation set:
- Loss: 0.3435
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.9638 | 0.01 | 1 | 8.3163 |
| 0.3508 | 0.28 | 20 | 0.3923 |
| 0.3166 | 0.55 | 40 | 0.3505 |
| 0.3363 | 0.83 | 60 | 0.3775 |
| 0.3295 | 1.09 | 80 | 0.3478 |
| 0.3232 | 1.36 | 100 | 0.3514 |
| 0.3569 | 1.64 | 120 | 0.3504 |
| 0.3379 | 1.92 | 140 | 0.3475 |
| 0.3234 | 2.17 | 160 | 0.3623 |
| 0.3442 | 2.45 | 180 | 0.3580 |
| 0.3103 | 2.73 | 200 | 0.3426 |
| 0.3253 | 3.0 | 220 | 0.3415 |
| 0.3291 | 3.26 | 240 | 0.3457 |
| 0.3248 | 3.54 | 260 | 0.3427 |
| 0.3463 | 3.81 | 280 | 0.3486 |
| 0.3273 | 4.07 | 300 | 0.3431 |
| 0.3071 | 4.35 | 320 | 0.3416 |
| 0.3227 | 4.62 | 340 | 0.3433 |
| 0.3333 | 4.9 | 360 | 0.3435 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
### Evaluation
These are the metrics reported on the test data (10% of boolq)
model='auto-improving-llama' accuracy=0.8629969418960245 avg_time=0.044935779816513415 avg_cost=1.6101987767584347e-05 |