File size: 3,097 Bytes
4e65560 9093ef4 4e65560 9093ef4 4e65560 9093ef4 4e65560 1904c22 4e65560 abda790 4e65560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- id
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: 'wav2vec2-large-xls-r-300m-ia'
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ia
metrics:
- name: Test WER using LM
type: wer
value: 8.6074
- name: Test CER using LM
type: cer
value: 2.4147
- name: Test WER without LM
type: wer
value: 20.1776
- name: Test CER without LM
type: cer
value: 4.7205
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ia
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1452
- Wer: 0.1253
## Training Procedure
Training is conducted in Google Colab, the training notebook provided in the repo
## Training and evaluation data
Language Model Created from texts from processed sentence in train + validation split of dataset (common voice 8.0 for Interlingua)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7.432 | 1.87 | 400 | 2.9636 | 1.0 |
| 2.6922 | 3.74 | 800 | 2.2111 | 0.9977 |
| 1.2581 | 5.61 | 1200 | 0.4864 | 0.4028 |
| 0.6232 | 7.48 | 1600 | 0.2807 | 0.2413 |
| 0.4479 | 9.35 | 2000 | 0.2219 | 0.1885 |
| 0.3654 | 11.21 | 2400 | 0.1886 | 0.1606 |
| 0.323 | 13.08 | 2800 | 0.1716 | 0.1444 |
| 0.2935 | 14.95 | 3200 | 0.1687 | 0.1443 |
| 0.2707 | 16.82 | 3600 | 0.1632 | 0.1382 |
| 0.2559 | 18.69 | 4000 | 0.1507 | 0.1337 |
| 0.2433 | 20.56 | 4400 | 0.1572 | 0.1358 |
| 0.2338 | 22.43 | 4800 | 0.1489 | 0.1305 |
| 0.2258 | 24.3 | 5200 | 0.1485 | 0.1278 |
| 0.2218 | 26.17 | 5600 | 0.1470 | 0.1272 |
| 0.2169 | 28.04 | 6000 | 0.1470 | 0.1270 |
| 0.2117 | 29.91 | 6400 | 0.1452 | 0.1253 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|