bert
File size: 1,495 Bytes
d964909
 
b12b386
 
d964909
 
 
4152ee2
d964909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: apache-2.0
base_model:
- sentence-transformers/all-MiniLM-L6-v2
---
**This model is a neuron compiled version of https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 ***

It was compiled on version 2.19.1 of the Neuron SDK. You may need to run the compilation process again.

See https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers for more details

For information on how to run on SageMaker: https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers

To run:

```
from optimum.neuron import NeuronModelForSentenceTransformers
from transformers import AutoTokenizer
model_id = "jburtoft/all-MiniLM-L6-v2-neuron"

# Use the line below if you have to compile the model yourself
#model_id = "all-MiniLM-L6-v2-neuron"


model = NeuronModelForSentenceTransformers.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Run inference
prompt = "I like to eat apples"
encoded_input = tokenizer(prompt, return_tensors='pt')
outputs = model(**encoded_input)

token_embeddings = outputs.token_embeddings
sentence_embedding = outputs.sentence_embedding

print(f"token embeddings: {token_embeddings.shape}") # torch.Size([1, 7, 384])
print(f"sentence_embedding: {sentence_embedding.shape}") # torch.Size([1, 384])
```

To compile:
```
optimum-cli export neuron -m sentence-transformers/all-MiniLM-L6-v2 --sequence_length 512 --batch_size 1 --task feature-extraction all-MiniLM-L6-v2-neuron
```