metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4577
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9562 | 1.0 | 113 | 1.8362 | 0.5 |
1.1877 | 2.0 | 226 | 1.2579 | 0.62 |
1.0263 | 3.0 | 339 | 1.0316 | 0.69 |
0.6373 | 4.0 | 452 | 0.7494 | 0.84 |
0.5875 | 5.0 | 565 | 0.6581 | 0.85 |
0.428 | 6.0 | 678 | 0.5088 | 0.89 |
0.3152 | 7.0 | 791 | 0.4619 | 0.86 |
0.1577 | 8.0 | 904 | 0.4274 | 0.88 |
0.2456 | 9.0 | 1017 | 0.4739 | 0.88 |
0.0905 | 10.0 | 1130 | 0.4577 | 0.87 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1