File size: 7,673 Bytes
c3c8ec7
 
 
 
 
 
 
f0a8a50
 
4747db8
f0a8a50
 
 
 
4747db8
f0a8a50
0e91bcd
c3c8ec7
 
4747db8
c3c8ec7
4747db8
86e9aa4
c3c8ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a8a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4747db8
f0a8a50
197d7a1
f0a8a50
197d7a1
f0a8a50
 
197d7a1
f0a8a50
 
 
197d7a1
 
f0a8a50
 
4747db8
92a8682
 
4747db8
92a8682
 
 
4f32693
 
4747db8
 
 
 
 
92a8682
 
c3c8ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e9aa4
 
 
 
 
 
 
 
 
c3c8ec7
 
5024d94
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
license: mit
datasets:
- avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
language:
- de
- en
base_model:
- avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI
- WhereIsAI/UAE-Large-V1
base_model_relation: merge
---

# German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German-RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
It was merged with the Base-Model [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) again to maintain performance on other languages again.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Evaluation MTEB-Tasks 

### Classification
- AmazonCounterfactualClassification
- AmazonReviewsClassification
- MassiveIntentClassification
- MassiveScenarioClassification
- MTOPDomainClassification
- MTOPIntentClassification

### Pair Classification
- FalseFriendsGermanEnglish
- PawsXPairClassification

### Retrieval
- GermanQuAD-Retrieval
- GermanDPR

### STS (Semantic Textual Similarity)
- GermanSTSBenchmark

| TASK                                | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/)   | [German-RAG-UAE](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI/) | Merged-UAE | German-RAG vs. UAE | Merged vs. UAE |
|-------------------------------------|-------|----------|------------|--------------|----------------|
| AmazonCounterfactualClassification | **0.5650** | 0.5449   | 0.5401     | -2.01%       | -2.48%         |
| AmazonReviewsClassification         | 0.2738 | 0.2745   | **0.2782**     | 0.08%        | 0.44%          |
| FalseFriendsGermanEnglish           | **0.4808** | 0.4777   | 0.4703     | -0.32%       | -1.05%         |
| GermanQuAD-Retrieval                | 0.7811 | 0.8353   | **0.8628**     | 5.42%        | 8.18%          |
| GermanSTSBenchmark                  | 0.6421 | 0.6568   | **0.6754**     | 1.47%        | 3.33%          |
| MassiveIntentClassification         | **0.5139** | 0.4884   | 0.4714     | -2.55%       | -4.25%         |
| MassiveScenarioClassification       | 0.6062 | 0.5837   | **0.6111**     | -2.25%       | 0.49%          |
| GermanDPR                           | 0.6750 | 0.7210   | **0.7507**     | 4.60%        | 7.57%          |
| MTOPDomainClassification            | 0.7625 | 0.7450   | **0.7686**     | -1.75%       | 0.61%          |
| MTOPIntentClassification            | **0.4994** | 0.4516   | 0.4413     | -4.77%       | -5.80%         |
| PawsXPairClassification             | **0.5452** | 0.5077   | 0.5162     | -3.76%       | -2.90%         |


## Evaluation on German-RAG-EMBEDDING-BENCHMARK

Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-BENCHMARK)

| Model Name                                       | Accuracy  |
|-------------------------------------------------|-----------|
| [bge-m3](https://huggingface.co/BAAI/bge-m3  )                                     | 0.8806    |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1)                            | 0.8393    |
| [German-RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI)             | 0.8857    |
| [German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI)      | **0.8866** |
| [German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI)   | **0.8866** |
| [German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI)       | 0.8763    |
| [German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI)   | 0.8771    |


## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("avemio-digital/UAE-Large-V1_Triples_Merged_with_base")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

```
@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
```



## The German-RAG AI Team
[Marcel Rosiak](https://de.linkedin.com/in/marcel-rosiak)
[Soumya Paul](https://de.linkedin.com/in/soumya-paul-1636a68a)
[Siavash Mollaebrahim](https://de.linkedin.com/in/siavash-mollaebrahim-4084b5153?trk=people-guest_people_search-card)
[Zain ul Haq](https://de.linkedin.com/in/zain-ul-haq-31ba35196)