File size: 7,673 Bytes
c3c8ec7 f0a8a50 4747db8 f0a8a50 4747db8 f0a8a50 0e91bcd c3c8ec7 4747db8 c3c8ec7 4747db8 86e9aa4 c3c8ec7 f0a8a50 4747db8 f0a8a50 197d7a1 f0a8a50 197d7a1 f0a8a50 197d7a1 f0a8a50 197d7a1 f0a8a50 4747db8 92a8682 4747db8 92a8682 4f32693 4747db8 92a8682 c3c8ec7 86e9aa4 c3c8ec7 5024d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
license: mit
datasets:
- avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
language:
- de
- en
base_model:
- avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI
- WhereIsAI/UAE-Large-V1
base_model_relation: merge
---
# German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI
This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German-RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
It was merged with the Base-Model [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) again to maintain performance on other languages again.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Evaluation MTEB-Tasks
### Classification
- AmazonCounterfactualClassification
- AmazonReviewsClassification
- MassiveIntentClassification
- MassiveScenarioClassification
- MTOPDomainClassification
- MTOPIntentClassification
### Pair Classification
- FalseFriendsGermanEnglish
- PawsXPairClassification
### Retrieval
- GermanQuAD-Retrieval
- GermanDPR
### STS (Semantic Textual Similarity)
- GermanSTSBenchmark
| TASK | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/) | [German-RAG-UAE](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI/) | Merged-UAE | German-RAG vs. UAE | Merged vs. UAE |
|-------------------------------------|-------|----------|------------|--------------|----------------|
| AmazonCounterfactualClassification | **0.5650** | 0.5449 | 0.5401 | -2.01% | -2.48% |
| AmazonReviewsClassification | 0.2738 | 0.2745 | **0.2782** | 0.08% | 0.44% |
| FalseFriendsGermanEnglish | **0.4808** | 0.4777 | 0.4703 | -0.32% | -1.05% |
| GermanQuAD-Retrieval | 0.7811 | 0.8353 | **0.8628** | 5.42% | 8.18% |
| GermanSTSBenchmark | 0.6421 | 0.6568 | **0.6754** | 1.47% | 3.33% |
| MassiveIntentClassification | **0.5139** | 0.4884 | 0.4714 | -2.55% | -4.25% |
| MassiveScenarioClassification | 0.6062 | 0.5837 | **0.6111** | -2.25% | 0.49% |
| GermanDPR | 0.6750 | 0.7210 | **0.7507** | 4.60% | 7.57% |
| MTOPDomainClassification | 0.7625 | 0.7450 | **0.7686** | -1.75% | 0.61% |
| MTOPIntentClassification | **0.4994** | 0.4516 | 0.4413 | -4.77% | -5.80% |
| PawsXPairClassification | **0.5452** | 0.5077 | 0.5162 | -3.76% | -2.90% |
## Evaluation on German-RAG-EMBEDDING-BENCHMARK
Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-BENCHMARK)
| Model Name | Accuracy |
|-------------------------------------------------|-----------|
| [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
| [German-RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 |
| [German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** |
| [German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** |
| [German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 |
| [German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 |
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("avemio-digital/UAE-Large-V1_Triples_Merged_with_base")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
```
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
```
## The German-RAG AI Team
[Marcel Rosiak](https://de.linkedin.com/in/marcel-rosiak)
[Soumya Paul](https://de.linkedin.com/in/soumya-paul-1636a68a)
[Siavash Mollaebrahim](https://de.linkedin.com/in/siavash-mollaebrahim-4084b5153?trk=people-guest_people_search-card)
[Zain ul Haq](https://de.linkedin.com/in/zain-ul-haq-31ba35196)
|