File size: 3,089 Bytes
f24aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654993b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fbe35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-extraction
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.8862817854414493
    - name: Recall
      type: recall
      value: 0.9084908826490659
    - name: F1
      type: f1
      value: 0.8972489227709645
    - name: Accuracy
      type: accuracy
      value: 0.9774889986814304
  - task:
      type: token-classification
      name: entity_extraction
    dataset:
      type: conll2003
      name: conll2003
      config: conll2003
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9703231821006837
      verified: true
    - name: Precision
      type: precision
      value: 0.9758137392136365
      verified: true
    - name: Recall
      type: recall
      value: 0.9764192759122017
      verified: true
    - name: F1 Score
      type: f1
      value: 0.9761164136513085
      verified: true
  - metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9703231821006837
      verified: true
    - name: Precision
      type: precision
      value: 0.9758137392136365
      verified: true
    - name: Recall
      type: recall
      value: 0.9764192759122017
      verified: true
    - name: F1
      type: f1
      value: 0.9761164136513085
      verified: true
    task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# entity-extraction

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2552        | 1.0   | 878  | 0.0808          | 0.8863    | 0.9085 | 0.8972 | 0.9775   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1