File size: 3,177 Bytes
f24aff8 654993b 36a6631 f24aff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-extraction
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8862817854414493
- name: Recall
type: recall
value: 0.9084908826490659
- name: F1
type: f1
value: 0.8972489227709645
- name: Accuracy
type: accuracy
value: 0.9774889986814304
- task:
type: token-classification
name: entity_extraction
dataset:
type: conll2003
name: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9703231821006837
verified: true
- name: Precision
type: precision
value: 0.9758137392136365
verified: true
- name: Recall
type: recall
value: 0.9764192759122017
verified: true
- name: F1 Score
type: f1
value: 0.9761164136513085
verified: true
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9703231821006837
verified: true
- name: Precision
type: precision
value: 0.9758137392136365
verified: true
- name: Recall
type: recall
value: 0.9764192759122017
verified: true
- name: F1
type: f1
value: 0.9761164136513085
verified: true
- name: loss
type: loss
value: 0.10596445202827454
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# entity-extraction
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2552 | 1.0 | 878 | 0.0808 | 0.8863 | 0.9085 | 0.8972 | 0.9775 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|