gpt2-p10k-cossine / README.md
augustocsc's picture
End of training
a57f8dc verified
metadata
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
model-index:
  - name: gpt2-p10k-cossine
    results: []

gpt2-p10k-cossine

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.2 200 0.0386
No log 0.4 400 0.0523
0.1425 0.6 600 1.0542
0.1425 0.8 800 1.0459
0.9177 1.0 1000 0.3677
0.9177 1.2 1200 0.0296
0.9177 1.4 1400 0.0284
0.0421 1.6 1600 0.0275
0.0421 1.8 1800 0.0274
0.029 2.0 2000 0.0264
0.029 2.2 2200 0.0258
0.029 2.4 2400 0.0256
0.0276 2.6 2600 0.0254
0.0276 2.8 2800 0.0252
0.0265 3.0 3000 0.0251
0.0265 3.2 3200 0.0247
0.0265 3.4 3400 0.0247
0.0256 3.6 3600 0.0246
0.0256 3.8 3800 0.0252
0.0262 4.0 4000 0.0249
0.0262 4.2 4200 0.0244
0.0262 4.4 4400 0.0242
0.0255 4.6 4600 0.0242
0.0255 4.8 4800 0.0248
0.0251 5.0 5000 0.0240
0.0251 5.2 5200 0.0242
0.0251 5.4 5400 0.0239
0.0254 5.6 5600 0.0239
0.0254 5.8 5800 0.0237
0.0244 6.0 6000 0.0237
0.0244 6.2 6200 0.0239
0.0244 6.4 6400 0.0237
0.0244 6.6 6600 0.0237
0.0244 6.8 6800 0.0238
0.0246 7.0 7000 0.0236
0.0246 7.2 7200 0.0235
0.0246 7.4 7400 0.0235
0.0242 7.6 7600 0.0235
0.0242 7.8 7800 0.0235
0.0244 8.0 8000 0.0236
0.0244 8.2 8200 0.0234
0.0244 8.4 8400 0.0235
0.0246 8.6 8600 0.0234
0.0246 8.8 8800 0.0234
0.0237 9.0 9000 0.0234
0.0237 9.2 9200 0.0234
0.0237 9.4 9400 0.0234
0.0241 9.6 9600 0.0234
0.0241 9.8 9800 0.0234
0.024 10.0 10000 0.0234

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1