bloom-1b1-clp-sw / README.md
atsuki-yamaguchi's picture
Upload README.md with huggingface_hub
6ce09ef verified
|
raw
history blame
923 Bytes
---
license: mit
language: sw
---
BLOOM-1B Swahili [LAPT + CLP]
===
## How to use
```python
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/bloom-1b1-clp-sw"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/bloom-1b1-clp-sw"
)
# w/ GPU
model = AutoPeftModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/bloom-1b1-clp-sw",
device_map="auto",
load_in_8bit=True,
)
```
## Citation
```
@article{yamaguchi2024empirical,
title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
journal={ArXiv},
year={2024},
volume={abs/2402.10712},
url={https://arxiv.org/abs/2402.10712}
}
```
## Link
For more details, please visit https://github.com/gucci-j/llm-cva