|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: scibert_claim_id_2e-05 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scibert_claim_id_2e-05 |
|
|
|
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0162 |
|
- Accuracy: 0.9962 |
|
- F1: 0.9880 |
|
- Precision: 0.9889 |
|
- Recall: 0.9870 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.3131 | 1.0 | 666 | 0.2551 | 0.8880 | 0.5518 | 0.7419 | 0.4392 | |
|
| 0.267 | 2.0 | 1332 | 0.1821 | 0.9280 | 0.7636 | 0.7875 | 0.7410 | |
|
| 0.2245 | 3.0 | 1998 | 0.0942 | 0.9695 | 0.9034 | 0.8968 | 0.9101 | |
|
| 0.1135 | 4.0 | 2664 | 0.0514 | 0.9845 | 0.9517 | 0.9339 | 0.9702 | |
|
| 0.0821 | 5.0 | 3330 | 0.0223 | 0.9944 | 0.9822 | 0.9808 | 0.9837 | |
|
| 0.0618 | 6.0 | 3996 | 0.0162 | 0.9962 | 0.9880 | 0.9889 | 0.9870 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|