File size: 1,972 Bytes
3e170b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: scibert_claim_id_2e-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scibert_claim_id_2e-05

This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0162
- Accuracy: 0.9962
- F1: 0.9880
- Precision: 0.9889
- Recall: 0.9870

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3131        | 1.0   | 666  | 0.2551          | 0.8880   | 0.5518 | 0.7419    | 0.4392 |
| 0.267         | 2.0   | 1332 | 0.1821          | 0.9280   | 0.7636 | 0.7875    | 0.7410 |
| 0.2245        | 3.0   | 1998 | 0.0942          | 0.9695   | 0.9034 | 0.8968    | 0.9101 |
| 0.1135        | 4.0   | 2664 | 0.0514          | 0.9845   | 0.9517 | 0.9339    | 0.9702 |
| 0.0821        | 5.0   | 3330 | 0.0223          | 0.9944   | 0.9822 | 0.9808    | 0.9837 |
| 0.0618        | 6.0   | 3996 | 0.0162          | 0.9962   | 0.9880 | 0.9889    | 0.9870 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3