athirdpath's picture
Adding Evaluation Results (#1)
4fb832a verified
metadata
license: other
pipeline_tag: text-generation
license_name: microsoft-research-license
model-index:
  - name: Orca-2-13b-Alpaca-Uncensored
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.09
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 79.27
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 53.59
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.43
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 38.29
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Orca-2-13b-Alpaca-Uncensored
          name: Open LLM Leaderboard

This model is a fine-tuned version of microsoft/Orca-2-13b on a subset of the Vezora/Mini_Orca_Uncencored_Alpaca dataset, adjusted to demonstrate the relationship between instruction and input, with some particularly spicy prompts added to reduce the risk of rejections.

Only the q_proj and k_proj modules were targeted and a low rank (8) was used, in hopes of containing the adjustments to the prompt format and alignment. This is promising on paper, with the training's per-step loss averaging <0.9 for the last third of the run.

Reasoning stayed solid (for a 13b model) and I consider this a success. Performance is slighty worse than OG Orca-2 in Ooba's chat mode, comparable in Alpaca chat-instruct mode to the OG in ChatLM chat-instruct mode.

May still reject some shocking prompts, but can easily be overcome with author's note or character card.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 61.63
AI2 Reasoning Challenge (25-Shot) 61.09
HellaSwag (10-Shot) 79.27
MMLU (5-Shot) 60.13
TruthfulQA (0-shot) 53.59
Winogrande (5-shot) 77.43
GSM8k (5-shot) 38.29