File size: 5,645 Bytes
aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a dcb25f8 aed089a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
---
# Model Card for Model ID
LoRA model trained for ~11 hours on r/uwaterloo data.
Only trained on top-level comments with the most upvotes on each post.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Anthony Susevski and Alvin Li
- **Model type:** LoRA
- **Language(s) (NLP):** English
- **License:** mit
- **Finetuned from model [optional]:** mistralai/Mistral-7B-v0.1
## Uses
Pass a post title and a post text(optional) in the style of a Reddit post into the below prompt.
```
prompt = f"""
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Respond to the reddit post in the style of a University of Waterloo student.
### Input:
{post_title}
{post_text}
### Response:
```
## Bias, Risks, and Limitations
No alignment training as of yet -- only SFT.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from peft import PeftModel, PeftConfig
peft_model_id = "asusevski/mistraloo-sft"
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
peft_config.base_model_name_or_path,
add_bos_token=True
)
post_title = "my example post title"
post_text = "my example post text"
prompt = f"""
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Respond to the reddit post in the style of a University of Waterloo student.
### Input:
{post_title}
{post_text}
### Response:
"""
model_input = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
model_output = model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0]
output = tokenizer.decode(model_output, skip_special_tokens=True)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 |