|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6643 |
|
- Wer: 0.2469 |
|
- Cer: 0.0788 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:| |
|
| 1.8874 | 0.9949 | 98 | 0.6403 | 0.5429 | 0.1657 | |
|
| 0.4899 | 2.0 | 197 | 0.4921 | 0.3300 | 0.1001 | |
|
| 0.3892 | 2.9949 | 295 | 0.4608 | 0.3314 | 0.1019 | |
|
| 0.3259 | 4.0 | 394 | 0.4729 | 0.3080 | 0.0942 | |
|
| 0.2863 | 4.9949 | 492 | 0.4495 | 0.3156 | 0.0951 | |
|
| 0.2333 | 6.0 | 591 | 0.4269 | 0.2624 | 0.0808 | |
|
| 0.2059 | 6.9949 | 689 | 0.4365 | 0.2609 | 0.0839 | |
|
| 0.1722 | 8.0 | 788 | 0.4346 | 0.2552 | 0.0825 | |
|
| 0.1551 | 8.9949 | 886 | 0.4134 | 0.2468 | 0.0766 | |
|
| 0.1318 | 10.0 | 985 | 0.4794 | 0.2631 | 0.0811 | |
|
| 0.1189 | 10.9949 | 1083 | 0.5191 | 0.2530 | 0.0796 | |
|
| 0.1004 | 12.0 | 1182 | 0.5311 | 0.2689 | 0.0794 | |
|
| 0.0959 | 12.9949 | 1280 | 0.5502 | 0.2535 | 0.0778 | |
|
| 0.0831 | 14.0 | 1379 | 0.5060 | 0.2476 | 0.0757 | |
|
| 0.0679 | 14.9949 | 1477 | 0.5023 | 0.2517 | 0.0830 | |
|
| 0.0617 | 16.0 | 1576 | 0.5279 | 0.2403 | 0.0757 | |
|
| 0.0562 | 16.9949 | 1674 | 0.6012 | 0.2411 | 0.0761 | |
|
| 0.0496 | 18.0 | 1773 | 0.6263 | 0.2423 | 0.0755 | |
|
| 0.0442 | 18.9949 | 1871 | 0.5991 | 0.2581 | 0.0794 | |
|
| 0.0401 | 20.0 | 1970 | 0.6323 | 0.2412 | 0.0762 | |
|
| 0.0329 | 20.9949 | 2068 | 0.6417 | 0.2326 | 0.0735 | |
|
| 0.0266 | 22.0 | 2167 | 0.6279 | 0.2381 | 0.0756 | |
|
| 0.0255 | 22.9949 | 2265 | 0.5834 | 0.2470 | 0.0772 | |
|
| 0.0214 | 24.0 | 2364 | 0.6781 | 0.2364 | 0.0735 | |
|
| 0.0217 | 24.9949 | 2462 | 0.6253 | 0.2398 | 0.0752 | |
|
| 0.0163 | 26.0 | 2561 | 0.6940 | 0.2427 | 0.0813 | |
|
| 0.0363 | 26.9949 | 2659 | 0.6632 | 0.2363 | 0.0756 | |
|
| 0.0182 | 28.0 | 2758 | 0.6094 | 0.2363 | 0.0766 | |
|
| 0.014 | 28.9949 | 2856 | 0.6928 | 0.2438 | 0.0770 | |
|
| 0.0157 | 30.0 | 2955 | 0.6863 | 0.2422 | 0.0768 | |
|
| 0.0121 | 30.9949 | 3053 | 0.6643 | 0.2469 | 0.0788 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|