End of training
Browse files- README.md +91 -195
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,199 +1,95 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: facebook/w2v-bert-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1
|
11 |
+
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6643
|
22 |
+
- Wer: 0.2469
|
23 |
+
- Cer: 0.0788
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 16
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 100
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
56 |
+
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
|
57 |
+
| 1.8874 | 0.9949 | 98 | 0.6403 | 0.5429 | 0.1657 |
|
58 |
+
| 0.4899 | 2.0 | 197 | 0.4921 | 0.3300 | 0.1001 |
|
59 |
+
| 0.3892 | 2.9949 | 295 | 0.4608 | 0.3314 | 0.1019 |
|
60 |
+
| 0.3259 | 4.0 | 394 | 0.4729 | 0.3080 | 0.0942 |
|
61 |
+
| 0.2863 | 4.9949 | 492 | 0.4495 | 0.3156 | 0.0951 |
|
62 |
+
| 0.2333 | 6.0 | 591 | 0.4269 | 0.2624 | 0.0808 |
|
63 |
+
| 0.2059 | 6.9949 | 689 | 0.4365 | 0.2609 | 0.0839 |
|
64 |
+
| 0.1722 | 8.0 | 788 | 0.4346 | 0.2552 | 0.0825 |
|
65 |
+
| 0.1551 | 8.9949 | 886 | 0.4134 | 0.2468 | 0.0766 |
|
66 |
+
| 0.1318 | 10.0 | 985 | 0.4794 | 0.2631 | 0.0811 |
|
67 |
+
| 0.1189 | 10.9949 | 1083 | 0.5191 | 0.2530 | 0.0796 |
|
68 |
+
| 0.1004 | 12.0 | 1182 | 0.5311 | 0.2689 | 0.0794 |
|
69 |
+
| 0.0959 | 12.9949 | 1280 | 0.5502 | 0.2535 | 0.0778 |
|
70 |
+
| 0.0831 | 14.0 | 1379 | 0.5060 | 0.2476 | 0.0757 |
|
71 |
+
| 0.0679 | 14.9949 | 1477 | 0.5023 | 0.2517 | 0.0830 |
|
72 |
+
| 0.0617 | 16.0 | 1576 | 0.5279 | 0.2403 | 0.0757 |
|
73 |
+
| 0.0562 | 16.9949 | 1674 | 0.6012 | 0.2411 | 0.0761 |
|
74 |
+
| 0.0496 | 18.0 | 1773 | 0.6263 | 0.2423 | 0.0755 |
|
75 |
+
| 0.0442 | 18.9949 | 1871 | 0.5991 | 0.2581 | 0.0794 |
|
76 |
+
| 0.0401 | 20.0 | 1970 | 0.6323 | 0.2412 | 0.0762 |
|
77 |
+
| 0.0329 | 20.9949 | 2068 | 0.6417 | 0.2326 | 0.0735 |
|
78 |
+
| 0.0266 | 22.0 | 2167 | 0.6279 | 0.2381 | 0.0756 |
|
79 |
+
| 0.0255 | 22.9949 | 2265 | 0.5834 | 0.2470 | 0.0772 |
|
80 |
+
| 0.0214 | 24.0 | 2364 | 0.6781 | 0.2364 | 0.0735 |
|
81 |
+
| 0.0217 | 24.9949 | 2462 | 0.6253 | 0.2398 | 0.0752 |
|
82 |
+
| 0.0163 | 26.0 | 2561 | 0.6940 | 0.2427 | 0.0813 |
|
83 |
+
| 0.0363 | 26.9949 | 2659 | 0.6632 | 0.2363 | 0.0756 |
|
84 |
+
| 0.0182 | 28.0 | 2758 | 0.6094 | 0.2363 | 0.0766 |
|
85 |
+
| 0.014 | 28.9949 | 2856 | 0.6928 | 0.2438 | 0.0770 |
|
86 |
+
| 0.0157 | 30.0 | 2955 | 0.6863 | 0.2422 | 0.0768 |
|
87 |
+
| 0.0121 | 30.9949 | 3053 | 0.6643 | 0.2469 | 0.0788 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.46.3
|
93 |
+
- Pytorch 2.1.0+cu118
|
94 |
+
- Datasets 3.1.0
|
95 |
+
- Tokenizers 0.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2423031860
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44c8c405b1f8f8295ab834e17ea1fea56967a2a90da3650946fd801a049a7b04
|
3 |
size 2423031860
|