metadata
library_name: transformers
language:
- zul
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- NCHLT_speech_corpus
metrics:
- wer
model-index:
- name: facebook mms-1b-all zulu - Beijuka Bruno
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NCHLT_speech_corpus/Zulu
type: NCHLT_speech_corpus
metrics:
- name: Wer
type: wer
value: 0.3739586979348967
facebook mms-1b-all zulu - Beijuka Bruno
This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Zulu dataset. It achieves the following results on the evaluation set:
- Loss: 0.2337
- Model Preparation Time: 0.0185
- Wer: 0.3740
- Cer: 0.0682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
134.9856 | 0.9796 | 30 | 13.9196 | 0.0185 | 1.0 | 1.1928 |
74.6875 | 1.9796 | 60 | 7.4763 | 0.0185 | 1.0 | 0.9660 |
48.924 | 2.9796 | 90 | 5.0082 | 0.0185 | 1.0 | 0.9261 |
34.5938 | 3.9796 | 120 | 3.8247 | 0.0185 | 1.0 | 0.9220 |
28.0008 | 4.9796 | 150 | 3.2622 | 0.0185 | 1.0 | 0.9262 |
25.6264 | 5.9796 | 180 | 3.0235 | 0.0185 | 0.9996 | 0.9055 |
23.2532 | 6.9796 | 210 | 2.7683 | 0.0185 | 0.9797 | 0.7992 |
12.3233 | 7.9796 | 240 | 0.2848 | 0.0185 | 0.3328 | 0.0541 |
2.5333 | 8.9796 | 270 | 0.1889 | 0.0185 | 0.2788 | 0.0421 |
2.1275 | 9.9796 | 300 | 0.1637 | 0.0185 | 0.2469 | 0.0373 |
1.9296 | 10.9796 | 330 | 0.1574 | 0.0185 | 0.2447 | 0.0368 |
1.7347 | 11.9796 | 360 | 0.1516 | 0.0185 | 0.2398 | 0.0364 |
1.7104 | 12.9796 | 390 | 0.1484 | 0.0185 | 0.2364 | 0.0355 |
1.6018 | 13.9796 | 420 | 0.1426 | 0.0185 | 0.2300 | 0.0344 |
1.5881 | 14.9796 | 450 | 0.1413 | 0.0185 | 0.2285 | 0.0337 |
1.5097 | 15.9796 | 480 | 0.1381 | 0.0185 | 0.2289 | 0.0337 |
1.4149 | 16.9796 | 510 | 0.1313 | 0.0185 | 0.2180 | 0.0321 |
1.4524 | 17.9796 | 540 | 0.1327 | 0.0185 | 0.2128 | 0.0313 |
1.3885 | 18.9796 | 570 | 0.1311 | 0.0185 | 0.2146 | 0.0323 |
1.3654 | 19.9796 | 600 | 0.1297 | 0.0185 | 0.2101 | 0.0312 |
1.2783 | 20.9796 | 630 | 0.1337 | 0.0185 | 0.2135 | 0.0313 |
1.2367 | 21.9796 | 660 | 0.1309 | 0.0185 | 0.2086 | 0.0310 |
1.219 | 22.9796 | 690 | 0.1282 | 0.0185 | 0.2124 | 0.0311 |
1.1463 | 23.9796 | 720 | 0.1277 | 0.0185 | 0.2075 | 0.0307 |
1.1602 | 24.9796 | 750 | 0.1281 | 0.0185 | 0.2101 | 0.0310 |
1.1487 | 25.9796 | 780 | 0.1256 | 0.0185 | 0.2019 | 0.0297 |
1.1645 | 26.9796 | 810 | 0.1259 | 0.0185 | 0.1985 | 0.0296 |
1.0974 | 27.9796 | 840 | 0.1268 | 0.0185 | 0.2023 | 0.0294 |
1.0918 | 28.9796 | 870 | 0.1356 | 0.0185 | 0.2079 | 0.0311 |
1.0377 | 29.9796 | 900 | 0.1270 | 0.0185 | 0.2 | 0.0300 |
0.9772 | 30.9796 | 930 | 0.1260 | 0.0185 | 0.1944 | 0.0289 |
0.9718 | 31.9796 | 960 | 0.1258 | 0.0185 | 0.1940 | 0.0289 |
0.9485 | 32.9796 | 990 | 0.1258 | 0.0185 | 0.1962 | 0.0289 |
0.9636 | 33.9796 | 1020 | 0.1256 | 0.0185 | 0.1910 | 0.0283 |
0.9122 | 34.9796 | 1050 | 0.1277 | 0.0185 | 0.1932 | 0.0289 |
0.9422 | 35.9796 | 1080 | 0.1263 | 0.0185 | 0.1906 | 0.0285 |
0.9554 | 36.9796 | 1110 | 0.1326 | 0.0185 | 0.1940 | 0.0292 |
0.9435 | 37.9796 | 1140 | 0.1301 | 0.0185 | 0.1925 | 0.0287 |
0.8582 | 38.9796 | 1170 | 0.1279 | 0.0185 | 0.1895 | 0.0281 |
0.8792 | 39.9796 | 1200 | 0.1321 | 0.0185 | 0.1944 | 0.0299 |
0.8537 | 40.9796 | 1230 | 0.1294 | 0.0185 | 0.1932 | 0.0287 |
0.8037 | 41.9796 | 1260 | 0.1324 | 0.0185 | 0.1936 | 0.0289 |
0.7627 | 42.9796 | 1290 | 0.1347 | 0.0185 | 0.1992 | 0.0295 |
0.836 | 43.9796 | 1320 | 0.1356 | 0.0185 | 0.1996 | 0.0292 |
0.8203 | 44.9796 | 1350 | 0.1348 | 0.0185 | 0.1951 | 0.0282 |
0.8289 | 45.9796 | 1380 | 0.1340 | 0.0185 | 0.1974 | 0.0289 |
0.794 | 46.9796 | 1410 | 0.1305 | 0.0185 | 0.1902 | 0.0280 |
0.7716 | 47.9796 | 1440 | 0.1307 | 0.0185 | 0.1902 | 0.0276 |
0.7461 | 48.9796 | 1470 | 0.1327 | 0.0185 | 0.1925 | 0.0279 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0