Beijuka's picture
End of training
3bc81a5 verified
metadata
library_name: transformers
language:
  - zul
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - NCHLT_speech_corpus
metrics:
  - wer
model-index:
  - name: facebook mms-1b-all zulu - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: NCHLT_speech_corpus/Zulu
          type: NCHLT_speech_corpus
        metrics:
          - name: Wer
            type: wer
            value: 0.3739586979348967

facebook mms-1b-all zulu - Beijuka Bruno

This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Zulu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2337
  • Model Preparation Time: 0.0185
  • Wer: 0.3740
  • Cer: 0.0682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
134.9856 0.9796 30 13.9196 0.0185 1.0 1.1928
74.6875 1.9796 60 7.4763 0.0185 1.0 0.9660
48.924 2.9796 90 5.0082 0.0185 1.0 0.9261
34.5938 3.9796 120 3.8247 0.0185 1.0 0.9220
28.0008 4.9796 150 3.2622 0.0185 1.0 0.9262
25.6264 5.9796 180 3.0235 0.0185 0.9996 0.9055
23.2532 6.9796 210 2.7683 0.0185 0.9797 0.7992
12.3233 7.9796 240 0.2848 0.0185 0.3328 0.0541
2.5333 8.9796 270 0.1889 0.0185 0.2788 0.0421
2.1275 9.9796 300 0.1637 0.0185 0.2469 0.0373
1.9296 10.9796 330 0.1574 0.0185 0.2447 0.0368
1.7347 11.9796 360 0.1516 0.0185 0.2398 0.0364
1.7104 12.9796 390 0.1484 0.0185 0.2364 0.0355
1.6018 13.9796 420 0.1426 0.0185 0.2300 0.0344
1.5881 14.9796 450 0.1413 0.0185 0.2285 0.0337
1.5097 15.9796 480 0.1381 0.0185 0.2289 0.0337
1.4149 16.9796 510 0.1313 0.0185 0.2180 0.0321
1.4524 17.9796 540 0.1327 0.0185 0.2128 0.0313
1.3885 18.9796 570 0.1311 0.0185 0.2146 0.0323
1.3654 19.9796 600 0.1297 0.0185 0.2101 0.0312
1.2783 20.9796 630 0.1337 0.0185 0.2135 0.0313
1.2367 21.9796 660 0.1309 0.0185 0.2086 0.0310
1.219 22.9796 690 0.1282 0.0185 0.2124 0.0311
1.1463 23.9796 720 0.1277 0.0185 0.2075 0.0307
1.1602 24.9796 750 0.1281 0.0185 0.2101 0.0310
1.1487 25.9796 780 0.1256 0.0185 0.2019 0.0297
1.1645 26.9796 810 0.1259 0.0185 0.1985 0.0296
1.0974 27.9796 840 0.1268 0.0185 0.2023 0.0294
1.0918 28.9796 870 0.1356 0.0185 0.2079 0.0311
1.0377 29.9796 900 0.1270 0.0185 0.2 0.0300
0.9772 30.9796 930 0.1260 0.0185 0.1944 0.0289
0.9718 31.9796 960 0.1258 0.0185 0.1940 0.0289
0.9485 32.9796 990 0.1258 0.0185 0.1962 0.0289
0.9636 33.9796 1020 0.1256 0.0185 0.1910 0.0283
0.9122 34.9796 1050 0.1277 0.0185 0.1932 0.0289
0.9422 35.9796 1080 0.1263 0.0185 0.1906 0.0285
0.9554 36.9796 1110 0.1326 0.0185 0.1940 0.0292
0.9435 37.9796 1140 0.1301 0.0185 0.1925 0.0287
0.8582 38.9796 1170 0.1279 0.0185 0.1895 0.0281
0.8792 39.9796 1200 0.1321 0.0185 0.1944 0.0299
0.8537 40.9796 1230 0.1294 0.0185 0.1932 0.0287
0.8037 41.9796 1260 0.1324 0.0185 0.1936 0.0289
0.7627 42.9796 1290 0.1347 0.0185 0.1992 0.0295
0.836 43.9796 1320 0.1356 0.0185 0.1996 0.0292
0.8203 44.9796 1350 0.1348 0.0185 0.1951 0.0282
0.8289 45.9796 1380 0.1340 0.0185 0.1974 0.0289
0.794 46.9796 1410 0.1305 0.0185 0.1902 0.0280
0.7716 47.9796 1440 0.1307 0.0185 0.1902 0.0276
0.7461 48.9796 1470 0.1327 0.0185 0.1925 0.0279

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0