File size: 5,043 Bytes
0f6c6ad
 
 
 
 
 
 
5699463
 
 
 
 
0f6c6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5699463
 
 
 
10521bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5699463
 
4a737e9
 
10521bc
5699463
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- semanticcuetsync
language:
- es
metrics:
- spearmanr
---

# {MODEL_NAME}

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 98 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 9e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 700,
    "weight_decay": 9.5e-07
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
  (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
**Bibtex**: 


@inproceedings{hossain-etal-2024-semanticcuetsync,
    title = "{S}emantic{CUETS}ync at {S}em{E}val-2024 Task 1: Finetuning Sentence Transformer to Find Semantic Textual Relatedness",
    author = "Hossain, Md. Sajjad  and
      Paran, Ashraful Islam  and
      Shohan, Symom Hossain  and
      Hossain, Jawad  and
      Hoque, Mohammed Moshiul",
    editor = {Ojha, Atul Kr.  and
      Do{\u{g}}ru{\"o}z, A. Seza  and
      Tayyar Madabushi, Harish  and
      Da San Martino, Giovanni  and
      Rosenthal, Sara  and
      Ros{\'a}, Aiala},
    booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.semeval-1.178",
    pages = "1222--1228",
    abstract = "Semantic textual relatedness is crucial to Natural Language Processing (NLP). Methodologies often exhibit superior performance in high-resource languages such as English compared to low-resource ones like Marathi, Telugu, and Spanish. This study leverages various machine learning (ML) approaches, including Support Vector Regression (SVR) and Random Forest, deep learning (DL) techniques such as Siamese Neural Networks, and transformer-based models such as MiniLM-L6-v2, Marathi-sbert, Telugu-sentence-bert-nli, and Roberta-bne-sentiment-analysis-es, to assess semantic relatedness across English, Marathi, Telugu, and Spanish. The developed transformer-based methods notably outperformed other models in determining semantic textual relatedness across these languages, achieving a Spearman correlation coefficient of 0.822 (for English), 0.870 (for Marathi), 0.820 (for Telugu), and 0.677 (for Spanish). These results led to our work attaining rankings of 22th (for English), 11th (for Marathi), 11th (for Telegu) and 14th (for Spanish), respectively.",
}

**Paper**: 
https://aclanthology.org/2024.semeval-1.178/

**Authors**: 


Md. Sajjad Hossain, Ashraful Islam Paran,
Symom Hossain Shohan, Jawad Hossain, and
Mohammed Moshiul Hoque. 2024. SemanticCUETSync at semeval-2024 task 1: Finetuning sentence
transformer to find semantic textual relatedness. In
Proceedings of the 18th International Workshop
on Semantic Evaluation (SemEval-2024), pages
1212–1218, Mexico City, Mexico. Association for
Computational Linguistics.