File size: 1,690 Bytes
1d42adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae867b
 
 
 
 
1d42adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae867b
 
 
1d42adf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: model_indicbert_small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model_indicbert_small

This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1079
- Precision: 0.9141
- Recall: 0.9076
- F1: 0.9109
- Accuracy: 0.9652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1584        | 1.0   | 8806  | 0.1524          | 0.8780    | 0.8698 | 0.8739 | 0.9499   |
| 0.1149        | 2.0   | 17612 | 0.1217          | 0.9032    | 0.8961 | 0.8996 | 0.9606   |
| 0.0925        | 3.0   | 26418 | 0.1079          | 0.9141    | 0.9076 | 0.9109 | 0.9652   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3