File size: 2,164 Bytes
230e6e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb-200-distilled-600M-finetuned_augmented_MT_ar-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb-200-distilled-600M-finetuned_augmented_MT_ar-to-en
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7204
- Bleu: 64.0069
- Gen Len: 65.416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.0557 | 1.0 | 2195 | 0.9595 | 49.4737 | 68.419 |
| 0.9159 | 2.0 | 4390 | 0.8377 | 55.3155 | 67.247 |
| 0.8074 | 3.0 | 6585 | 0.7898 | 58.8942 | 66.102 |
| 0.7441 | 4.0 | 8780 | 0.7559 | 60.8889 | 65.846 |
| 0.6963 | 5.0 | 10975 | 0.7395 | 61.3835 | 66.31 |
| 0.641 | 6.0 | 13170 | 0.7320 | 62.4226 | 65.985 |
| 0.6106 | 7.0 | 15365 | 0.7257 | 62.8285 | 65.505 |
| 0.5826 | 8.0 | 17560 | 0.7212 | 63.5372 | 65.474 |
| 0.5766 | 9.0 | 19755 | 0.7195 | 63.8042 | 65.525 |
| 0.5533 | 10.0 | 21950 | 0.7204 | 64.0069 | 65.416 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|