File size: 3,494 Bytes
09087a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli
results: []
datasets:
- asadfgglie/nli-zh-tw-all
- asadfgglie/BanBan_2024-10-17-facial_expressions-nli
language:
- zh
pipeline_tag: zero-shot-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli
This model is merge dataset stratege version of v3.0 and v4.0.
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4531
- F1 Macro: 0.8330
- F1 Micro: 0.8337
- Accuracy Balanced: 0.8331
- Accuracy: 0.8337
- Precision Macro: 0.8330
- Recall Macro: 0.8331
- Precision Micro: 0.8337
- Recall Micro: 0.8337
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 20241201
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.3748 | 0.85 | 200 | 0.4218 | 0.7971 | 0.7999 | 0.7970 | 0.7999 | 0.7973 | 0.7970 | 0.7999 | 0.7999 |
| 0.2693 | 1.69 | 400 | 0.4523 | 0.8061 | 0.8078 | 0.8077 | 0.8078 | 0.8053 | 0.8077 | 0.8078 | 0.8078 |
| 0.1905 | 2.54 | 600 | 0.4720 | 0.8226 | 0.8242 | 0.8241 | 0.8242 | 0.8217 | 0.8241 | 0.8242 | 0.8242 |
### Eval results
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset|
| :---: | :---: | :---: | :---: | :---: |
|eval_loss|0.48|0.269|0.484|0.453|
|eval_f1_macro|0.821|0.909|0.816|0.833|
|eval_f1_micro|0.822|0.909|0.818|0.834|
|eval_accuracy_balanced|0.821|0.909|0.816|0.833|
|eval_accuracy|0.822|0.909|0.818|0.834|
|eval_precision_macro|0.821|0.909|0.816|0.833|
|eval_recall_macro|0.821|0.909|0.816|0.833|
|eval_precision_micro|0.822|0.909|0.818|0.834|
|eval_recall_micro|0.822|0.909|0.818|0.834|
|eval_runtime|239.87|4.066|58.954|236.797|
|eval_samples_per_second|35.436|232.633|32.042|31.913|
|eval_steps_per_second|0.279|1.967|0.254|0.253|
|epoch|2.99|2.99|2.99|2.99|
|Size of dataset|8500|946|1889|7557|
### Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3 |