librarian-bot's picture
Librarian Bot: Add base_model information to model
497df5e
|
raw
history blame
4.75 kB
metadata
language:
  - ru
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-base
model-index:
  - name: whisper-base-fine_tuned-ru
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: ru, split: test'
        metrics:
          - type: wer
            value: 41.216909250757055
            name: Wer

whisper-base-fine_tuned-ru

This model is a fine-tuned version of openai/whisper-base on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4553
  • Wer: 41.2169

Model description

Same as original model (see whisper-base). But! This model has been fine-tuned for the task of transcribing the Russian language.

Intended uses & limitations

Same as original model (see whisper-base).

Training and evaluation data

More information needed

Training procedure

The model is fine-tuned using the following notebook (available only in the Russian version): https://github.com/blademoon/Whisper_Train

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.702 0.25 500 0.8245 71.6653
0.5699 0.49 1000 0.6640 55.7048
0.5261 0.74 1500 0.6127 50.6215
0.4997 0.98 2000 0.5834 47.4541
0.4681 1.23 2500 0.5638 46.6262
0.4651 1.48 3000 0.5497 47.5090
0.4637 1.72 3500 0.5379 46.5700
0.4185 1.97 4000 0.5274 45.3160
0.3856 2.22 4500 0.5205 45.5871
0.4078 2.46 5000 0.5122 45.7190
0.4132 2.71 5500 0.5066 45.5004
0.3914 2.96 6000 0.4998 47.0011
0.3822 3.2 6500 0.4959 44.9570
0.3596 3.45 7000 0.4916 45.5578
0.3877 3.69 7500 0.4870 45.2476
0.3687 3.94 8000 0.4832 45.2159
0.3514 4.19 8500 0.4809 46.0254
0.3202 4.43 9000 0.4779 48.1306
0.3229 4.68 9500 0.4751 45.5724
0.3285 4.93 10000 0.4717 45.9436
0.3286 5.17 10500 0.4705 45.0510
0.3294 5.42 11000 0.4689 47.2111
0.3384 5.66 11500 0.4666 47.3393
0.316 5.91 12000 0.4650 43.2536
0.2988 6.16 12500 0.4638 42.9789
0.3046 6.4 13000 0.4629 42.4331
0.2962 6.65 13500 0.4614 40.2437
0.3008 6.9 14000 0.4602 39.5734
0.2749 7.14 14500 0.4593 40.1497
0.3001 7.39 15000 0.4588 42.6248
0.3054 7.64 15500 0.4580 40.3707
0.2926 7.88 16000 0.4574 39.4232
0.2938 8.13 16500 0.4569 40.9532
0.3105 8.37 17000 0.4566 40.4379
0.2799 8.62 17500 0.4562 40.3622
0.2793 8.87 18000 0.4557 41.3451
0.2819 9.11 18500 0.4555 41.4184
0.2907 9.36 19000 0.4555 39.9348
0.3113 9.61 19500 0.4553 41.0289
0.2867 9.85 20000 0.4553 41.2169

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.1
  • Datasets 2.7.1
  • Tokenizers 0.13.1