metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
base_model: ntu-spml/distilhubert
model-index:
- name: distilhubert-finetuned-gtzan
results: []
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4989
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2359 | 1.0 | 112 | 0.4776 | 0.87 |
0.1235 | 2.0 | 225 | 0.4872 | 0.84 |
0.2083 | 3.0 | 337 | 0.4910 | 0.85 |
0.19 | 4.0 | 450 | 0.4953 | 0.87 |
0.1128 | 5.0 | 562 | 0.4801 | 0.87 |
0.1644 | 6.0 | 675 | 0.4703 | 0.87 |
0.0699 | 7.0 | 787 | 0.4692 | 0.85 |
0.1082 | 8.0 | 900 | 0.4708 | 0.87 |
0.0898 | 9.0 | 1012 | 0.4347 | 0.89 |
0.1071 | 10.0 | 1125 | 0.5310 | 0.85 |
0.0727 | 11.0 | 1237 | 0.4765 | 0.87 |
0.0338 | 12.0 | 1350 | 0.4859 | 0.87 |
0.0233 | 13.0 | 1462 | 0.4713 | 0.87 |
0.0248 | 14.0 | 1575 | 0.5068 | 0.88 |
0.0263 | 15.0 | 1687 | 0.4874 | 0.88 |
0.0185 | 16.0 | 1800 | 0.4925 | 0.88 |
0.0142 | 17.0 | 1912 | 0.4766 | 0.89 |
0.0178 | 18.0 | 2025 | 0.4850 | 0.89 |
0.0153 | 19.0 | 2137 | 0.4660 | 0.88 |
0.012 | 20.0 | 2250 | 0.4831 | 0.88 |
0.0113 | 21.0 | 2362 | 0.4965 | 0.89 |
0.0106 | 22.0 | 2475 | 0.5098 | 0.89 |
0.011 | 23.0 | 2587 | 0.5093 | 0.89 |
0.009 | 24.0 | 2700 | 0.4989 | 0.91 |
0.0094 | 25.0 | 2812 | 0.4999 | 0.89 |
0.0441 | 26.0 | 2925 | 0.5197 | 0.88 |
0.0079 | 27.0 | 3037 | 0.5115 | 0.89 |
0.0072 | 28.0 | 3150 | 0.5136 | 0.88 |
0.007 | 29.0 | 3262 | 0.5394 | 0.88 |
0.0068 | 30.0 | 3375 | 0.5374 | 0.88 |
0.0061 | 31.0 | 3487 | 0.5221 | 0.88 |
0.0533 | 32.0 | 3600 | 0.5775 | 0.87 |
0.0055 | 33.0 | 3712 | 0.5632 | 0.88 |
0.0059 | 34.0 | 3825 | 0.5584 | 0.87 |
0.0051 | 35.0 | 3937 | 0.5444 | 0.88 |
0.0051 | 36.0 | 4050 | 0.5373 | 0.88 |
0.0045 | 37.0 | 4162 | 0.5723 | 0.87 |
0.0058 | 38.0 | 4275 | 0.5773 | 0.87 |
0.0043 | 39.0 | 4387 | 0.5455 | 0.88 |
0.0044 | 40.0 | 4500 | 0.5686 | 0.88 |
0.004 | 41.0 | 4612 | 0.5622 | 0.87 |
0.004 | 42.0 | 4725 | 0.5797 | 0.88 |
0.0042 | 43.0 | 4837 | 0.5621 | 0.88 |
0.0037 | 44.0 | 4950 | 0.5734 | 0.87 |
0.0048 | 45.0 | 5062 | 0.5774 | 0.88 |
0.0039 | 46.0 | 5175 | 0.5901 | 0.87 |
0.0043 | 47.0 | 5287 | 0.5743 | 0.88 |
0.0043 | 48.0 | 5400 | 0.5757 | 0.87 |
0.0037 | 49.0 | 5512 | 0.5710 | 0.88 |
0.0036 | 49.78 | 5600 | 0.5759 | 0.87 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3