artyomboyko's picture
update model card README.md
dac5b4b
|
raw
history blame
7.65 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7554
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3168 1.0 113 2.2998 0.06
2.2869 2.0 226 2.2880 0.15
2.2711 3.0 339 2.2649 0.32
2.2407 4.0 452 2.2306 0.36
2.1993 5.0 565 2.1723 0.41
2.1239 6.0 678 2.0768 0.54
2.0001 7.0 791 1.9675 0.63
1.9217 8.0 904 1.8527 0.63
1.7955 9.0 1017 1.7538 0.62
1.8026 10.0 1130 1.6549 0.63
1.6166 11.0 1243 1.5623 0.68
1.5788 12.0 1356 1.4857 0.67
1.4279 13.0 1469 1.4114 0.64
1.3744 14.0 1582 1.3545 0.7
1.1651 15.0 1695 1.2848 0.67
1.1956 16.0 1808 1.2487 0.69
1.1852 17.0 1921 1.1826 0.73
1.1153 18.0 2034 1.1325 0.73
1.0218 19.0 2147 1.1174 0.71
1.0623 20.0 2260 1.0428 0.73
0.9385 21.0 2373 1.0111 0.75
0.9395 22.0 2486 0.9853 0.75
0.8799 23.0 2599 0.9868 0.72
0.74 24.0 2712 0.9136 0.76
0.8411 25.0 2825 0.9025 0.74
0.8784 26.0 2938 0.8757 0.76
0.726 27.0 3051 0.8720 0.75
0.7704 28.0 3164 0.8135 0.75
0.7628 29.0 3277 0.7514 0.82
0.6254 30.0 3390 0.7675 0.77
0.5432 31.0 3503 0.7689 0.77
0.5699 32.0 3616 0.7197 0.81
0.5448 33.0 3729 0.6838 0.82
0.5634 34.0 3842 0.7029 0.81
0.4702 35.0 3955 0.7170 0.77
0.3946 36.0 4068 0.6443 0.82
0.4749 37.0 4181 0.6318 0.83
0.317 38.0 4294 0.6420 0.83
0.3082 39.0 4407 0.6190 0.82
0.2932 40.0 4520 0.6196 0.83
0.2928 41.0 4633 0.6059 0.83
0.2902 42.0 4746 0.6290 0.82
0.3297 43.0 4859 0.6039 0.82
0.2645 44.0 4972 0.5924 0.83
0.2586 45.0 5085 0.6134 0.83
0.2815 46.0 5198 0.6237 0.81
0.3678 47.0 5311 0.6001 0.81
0.2904 48.0 5424 0.5742 0.84
0.1635 49.0 5537 0.6265 0.82
0.1144 50.0 5650 0.5945 0.81
0.1677 51.0 5763 0.5986 0.83
0.1879 52.0 5876 0.6099 0.83
0.1977 53.0 5989 0.5745 0.84
0.1255 54.0 6102 0.5959 0.82
0.0789 55.0 6215 0.6409 0.83
0.0634 56.0 6328 0.5985 0.82
0.1688 57.0 6441 0.5848 0.84
0.1464 58.0 6554 0.6173 0.83
0.1089 59.0 6667 0.6245 0.83
0.0963 60.0 6780 0.6343 0.82
0.0548 61.0 6893 0.6277 0.83
0.1293 62.0 7006 0.6128 0.83
0.0406 63.0 7119 0.6339 0.83
0.0532 64.0 7232 0.6480 0.83
0.214 65.0 7345 0.6661 0.81
0.1246 66.0 7458 0.6637 0.83
0.036 67.0 7571 0.6527 0.85
0.1168 68.0 7684 0.6517 0.84
0.0322 69.0 7797 0.6714 0.83
0.0362 70.0 7910 0.6912 0.81
0.1088 71.0 8023 0.6830 0.85
0.0258 72.0 8136 0.7039 0.82
0.0776 73.0 8249 0.6931 0.83
0.0684 74.0 8362 0.6688 0.82
0.0169 75.0 8475 0.6966 0.83
0.1039 76.0 8588 0.6914 0.83
0.0361 77.0 8701 0.6978 0.84
0.0143 78.0 8814 0.7023 0.84
0.0161 79.0 8927 0.7156 0.83
0.0207 80.0 9040 0.7264 0.82
0.0129 81.0 9153 0.7155 0.82
0.0161 82.0 9266 0.7418 0.81
0.0284 83.0 9379 0.7270 0.82
0.0166 84.0 9492 0.7460 0.83
0.0144 85.0 9605 0.7430 0.83
0.0121 86.0 9718 0.7459 0.83
0.0116 87.0 9831 0.7579 0.83
0.0106 88.0 9944 0.7485 0.83
0.0104 89.0 10057 0.7586 0.81
0.0121 90.0 10170 0.7579 0.84
0.01 91.0 10283 0.7474 0.83
0.0099 92.0 10396 0.7528 0.83
0.0117 93.0 10509 0.7603 0.82
0.0174 94.0 10622 0.7646 0.83
0.0103 95.0 10735 0.7557 0.83
0.0102 96.0 10848 0.7548 0.83
0.0101 97.0 10961 0.7519 0.83
0.0096 98.0 11074 0.7557 0.83
0.0098 99.0 11187 0.7556 0.83
0.0098 100.0 11300 0.7554 0.83

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3