File size: 4,479 Bytes
e4eca9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0790926
 
 
 
 
 
e4eca9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0790926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4eca9c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: arthurmluz/ptt5-xlsumm-30epochs
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ptt5-xlsumm-gptextsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ptt5-xlsumm-gptextsum

This model is a fine-tuned version of [arthurmluz/ptt5-xlsumm-30epochs](https://huggingface.co/arthurmluz/ptt5-xlsumm-30epochs) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1132
- Rouge1: 0.1715
- Rouge2: 0.0919
- Rougel: 0.1417
- Rougelsum: 0.1611
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 70   | 2.3037          | 0.1617 | 0.0691 | 0.1287 | 0.1467    | 19.0    |
| No log        | 2.0   | 140  | 2.2106          | 0.1722 | 0.082  | 0.1362 | 0.1585    | 19.0    |
| 2.3539        | 3.0   | 210  | 2.1604          | 0.1738 | 0.0854 | 0.1387 | 0.1604    | 19.0    |
| 2.3539        | 4.0   | 280  | 2.1325          | 0.1727 | 0.0868 | 0.1407 | 0.1632    | 19.0    |
| 2.3539        | 5.0   | 350  | 2.1117          | 0.1707 | 0.0875 | 0.137  | 0.1603    | 19.0    |
| 2.0032        | 6.0   | 420  | 2.0957          | 0.1723 | 0.0907 | 0.1415 | 0.1607    | 19.0    |
| 2.0032        | 7.0   | 490  | 2.0848          | 0.1722 | 0.09   | 0.1414 | 0.1617    | 19.0    |
| 2.0032        | 8.0   | 560  | 2.0790          | 0.1757 | 0.0918 | 0.1429 | 0.164     | 19.0    |
| 1.8158        | 9.0   | 630  | 2.0800          | 0.1723 | 0.0929 | 0.1421 | 0.1614    | 19.0    |
| 1.8158        | 10.0  | 700  | 2.0736          | 0.1733 | 0.0923 | 0.1428 | 0.1617    | 19.0    |
| 1.8158        | 11.0  | 770  | 2.0721          | 0.1755 | 0.0955 | 0.1454 | 0.1631    | 19.0    |
| 1.6764        | 12.0  | 840  | 2.0784          | 0.1763 | 0.0973 | 0.1459 | 0.1637    | 19.0    |
| 1.6764        | 13.0  | 910  | 2.0761          | 0.1752 | 0.094  | 0.1456 | 0.1638    | 19.0    |
| 1.6764        | 14.0  | 980  | 2.0802          | 0.1745 | 0.0951 | 0.145  | 0.1631    | 19.0    |
| 1.5616        | 15.0  | 1050 | 2.0790          | 0.1745 | 0.0952 | 0.1458 | 0.1632    | 19.0    |
| 1.5616        | 16.0  | 1120 | 2.0841          | 0.1735 | 0.0946 | 0.1447 | 0.1629    | 19.0    |
| 1.5616        | 17.0  | 1190 | 2.0904          | 0.1731 | 0.0943 | 0.1444 | 0.1622    | 19.0    |
| 1.4821        | 18.0  | 1260 | 2.0909          | 0.1727 | 0.0934 | 0.1433 | 0.1613    | 19.0    |
| 1.4821        | 19.0  | 1330 | 2.0934          | 0.1738 | 0.0948 | 0.1448 | 0.1632    | 19.0    |
| 1.4256        | 20.0  | 1400 | 2.0948          | 0.1726 | 0.0935 | 0.1434 | 0.1621    | 19.0    |
| 1.4256        | 21.0  | 1470 | 2.0981          | 0.173  | 0.0942 | 0.1435 | 0.1621    | 19.0    |
| 1.4256        | 22.0  | 1540 | 2.1023          | 0.1734 | 0.0945 | 0.1445 | 0.1631    | 19.0    |
| 1.3691        | 23.0  | 1610 | 2.1048          | 0.1726 | 0.0941 | 0.1436 | 0.1616    | 19.0    |
| 1.3691        | 24.0  | 1680 | 2.1058          | 0.1721 | 0.0948 | 0.1435 | 0.1619    | 19.0    |
| 1.3691        | 25.0  | 1750 | 2.1095          | 0.1721 | 0.0945 | 0.1435 | 0.1619    | 19.0    |
| 1.3444        | 26.0  | 1820 | 2.1103          | 0.1721 | 0.0948 | 0.1436 | 0.1624    | 19.0    |
| 1.3444        | 27.0  | 1890 | 2.1113          | 0.1715 | 0.0923 | 0.1417 | 0.1611    | 19.0    |
| 1.3444        | 28.0  | 1960 | 2.1121          | 0.1715 | 0.0919 | 0.1417 | 0.1611    | 19.0    |
| 1.3145        | 29.0  | 2030 | 2.1130          | 0.172  | 0.093  | 0.1425 | 0.1619    | 19.0    |
| 1.3145        | 30.0  | 2100 | 2.1132          | 0.1715 | 0.0919 | 0.1417 | 0.1611    | 19.0    |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1