File size: 2,501 Bytes
0cc74c9
 
 
 
 
 
9de9087
 
 
35c46c0
26c3bdf
8493b77
26c3bdf
8493b77
 
 
 
 
0cc74c9
 
9de9087
0cc74c9
8ec4e2c
0cc74c9
 
 
1e44e60
9de9087
0cc74c9
 
 
 
 
 
 
 
 
 
 
 
9de9087
0cc74c9
9de9087
 
0cc74c9
 
 
 
 
 
 
 
 
 
537365f
0cc74c9
936baa6
0cc74c9
 
 
 
 
 
 
 
 
 
 
 
a61ae8c
0cc74c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- ru
- en
inference: true
widget:
- source_sentence: Москва
  sentences:
  - Moscow
  - Mytishchi
  - Meshchera
  example_title: Geonames cities
license: apache-2.0
---

# LaBSE_geonames_RU_RELOCATION

This is a [sentence-transformers](https://www.SBERT.net) model: It maps geonames to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

This model fine tuned on geonames cities500 RU and popular relocation countries.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
cities = ["Vladivostok", "Moscow"]

model = SentenceTransformer('artefucktor/LaBSE_geonames_RU_RELOCATION')
embeddings = model.encode(cities)
print(embeddings)
```



## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 23984 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)
```

## Citing & Authors

<!--- Describe where people can find more information -->