wav2vec-reptiles / README.md
arslanarjumand's picture
arslanarjumand/wav2vec-reptiles
ed9d65a verified
|
raw
history blame
2.59 kB
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec-reptiles
    results: []

wav2vec-reptiles

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 483.1183
  • Pcc Accuracy: -0.0911
  • Pcc Fluency: -0.0702
  • Pcc Total Score: -0.0823
  • Pcc Content: -0.0799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.4
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Pcc Accuracy Pcc Fluency Pcc Total Score Pcc Content
3259.2658 1.07 500 2804.9829 -0.2619 -0.2376 -0.2620 -0.2464
1980.8576 2.13 1000 2444.1970 -0.2591 -0.2359 -0.2573 -0.2394
1728.8568 3.2 1500 1480.2877 -0.2539 -0.2310 -0.2519 -0.2337
490.517 4.27 2000 577.7591 -0.2334 -0.2102 -0.2303 -0.2141
761.9771 5.34 2500 503.8331 -0.1885 -0.1646 -0.1829 -0.1714
286.5463 6.4 3000 496.2837 -0.1460 -0.1234 -0.1390 -0.1315
341.2555 7.47 3500 488.9790 -0.1150 -0.0937 -0.1072 -0.1026
544.4691 8.54 4000 484.3144 -0.0955 -0.0745 -0.0870 -0.0841
377.6802 9.61 4500 483.1183 -0.0911 -0.0702 -0.0823 -0.0799

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.17.1
  • Tokenizers 0.15.1