File size: 13,769 Bytes
f0235ec
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7abc4c2f6290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7abc4c2f6320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7abc4c2f63b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7abc4c2f6440>", "_build": "<function ActorCriticPolicy._build at 0x7abc4c2f64d0>", "forward": "<function ActorCriticPolicy.forward at 0x7abc4c2f6560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7abc4c2f65f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7abc4c2f6680>", "_predict": "<function ActorCriticPolicy._predict at 0x7abc4c2f6710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7abc4c2f67a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7abc4c2f6830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7abc4c2f68c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7abc4c4a5580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714568948811649143, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGanQL26NKs/dhcEvxO5zr4T4128oJESvgAAAAAAAAAAM4s4PK6dlLo9c1s5vExSNE3an7rdGH64AACAPwAAgD/aJ4y9wzFhumYakDP7TyYwHWjvuWW+trMAAIA/AACAPy06Kr42fn68Ow/KukY+Ebnvvdk98JkHOgAAgD8AAIA/GoJEvfZoQjm1g128sZsTPeQwLzuE3S+8AACAPwAAAABNdji9KeAMuiK5ETnjpJC2NTeyu61nLLgAAIA/AACAP4B/Zz2PFg+6qESCuVPAFTTw9Iq7YduXOAAAgD8AAAAATeN9PnEmNT9yOko9m3Puvg+1kz7nJ7S9AAAAAAAAAABm5oW8FDqOuj1ZWLO+aDOsaKIZO24jrDMAAIA/AACAPybfxL2DX78+Br8aPrTspb4+SUQ9YPdhvQAAAAAAAAAAs/i9vSmkObqgucS64JcftjZ+IzsOUOE5AACAPwAAAABm97887neJvDzBh70q0yE9l9TrPXCN/L0AAIA/AACAP1qxur37bsm8IioMPGT4dTyFA869kj6qvQAAAAAAAIA/85jBvVwze7quIdo7PainN32kSbqdNj02AACAPwAAgD+WrYO+djsBPzKQfD1pTYm+gUuVveiYdD0AAAAAAAAAAHOGID47faE+RfVHvnyzjb5ZNZg8GXODPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGB2jwhGH6MAWyUTegDjAF0lEdAkU0pb2USqXV9lChoBkdANmGGucMEzWgHS5poCEdAkU1ZIQOFxnV9lChoBkdAb0NYkE9t/GgHTeoCaAhHQJFTR4nndO91fZQoaAZHQGN3Bn8KohpoB03oA2gIR0CRVJy2hIvrdX2UKGgGR0Be9gsbvPToaAdN6ANoCEdAkVZv9UCJXXV9lChoBkdAXcFUuL74z2gHTegDaAhHQJFb+cYqG1x1fZQoaAZHP/W2QXAM2FZoB0vbaAhHQJFidSm65G11fZQoaAZHQHCoAJswco9oB03OAWgIR0CRZehcJMQFdX2UKGgGR0BmPdII4VASaAdN6ANoCEdAkWX44MnZ03V9lChoBkdAZkmNnXd0rGgHTegDaAhHQJFqwJw84gl1fZQoaAZHQHBbmhAWznloB027AmgIR0CRcHA3T/hmdX2UKGgGR0Byd5PpIMBqaAdNggNoCEdAkYPbdepn6HV9lChoBkdAZWTGOMl1KWgHTegDaAhHQJGGw7gbZOB1fZQoaAZHQHF1u5avA45oB03NAWgIR0CRhzzwMH8kdX2UKGgGR0BP8PlU6xPgaAdL5mgIR0CRiMAaef7KdX2UKGgGR0Bi9THfdhy9aAdN6ANoCEdAkYkZXuE253V9lChoBkdAcYzIo3JgcGgHTUoBaAhHQJGJTfDUExJ1fZQoaAZHQGNsFYuCf6JoB03oA2gIR0CRiag3tKI0dX2UKGgGR0Bx4uN4qwyJaAdNGgNoCEdAkYqJ1JUYK3V9lChoBkdAcKGR1oxpL2gHTUkDaAhHQJGKxTOxB3R1fZQoaAZHQGPq0ngHeJpoB03oA2gIR0CRkNw8W9DhdX2UKGgGR0BwoaWldkauaAdNPANoCEdAkZKh2wFC9nV9lChoBkdATAT3Gn4wiGgHS91oCEdAkZPHL/0dzXV9lChoBkdAZFopLEk0JmgHTegDaAhHQJGUvz/ZM+N1fZQoaAZHQG6y4150KZ5oB01bAWgIR0CRmItVJcxCdX2UKGgGR0BiGUguAZsLaAdN6ANoCEdAkZ7wG8mKInV9lChoBkdAZBur6tT1kGgHTegDaAhHQJGpnRc/t6Z1fZQoaAZHQGT0iGFi8WdoB03oA2gIR0CRrUr6ciGGdX2UKGgGR0BwyB8MNMGpaAdNwwJoCEdAka2/Nqxkd3V9lChoBkdAcngp3os7MmgHTW0BaAhHQJG0BLGrCFd1fZQoaAZHQGQtBreqJdloB03oA2gIR0CRuEQyhzvJdX2UKGgGR0Bi6XYL9deIaAdN6ANoCEdAkc3tnTRYzXV9lChoBkdAbU2GwiaAnWgHTZkDaAhHQJHOl0bLlmx1fZQoaAZHQHC332ugYgtoB03oAmgIR0CRz0+ERJ2/dX2UKGgGR0BwwrgqEvkBaAdNLwFoCEdAkdHMny/bkHV9lChoBkdAYONmITGo72gHTegDaAhHQJHS0WoFV1h1fZQoaAZHQHB85qynk1doB03TA2gIR0CR0t2YfGModX2UKGgGR0BkL6bSZ0CBaAdN6ANoCEdAkdMbkjopx3V9lChoBkdAcNChgE2YOWgHTVcBaAhHQJHTZV0cOsl1fZQoaAZHQF4toRqXWvtoB03oA2gIR0CR0+YQ8OkMdX2UKGgGR0AZNYlpoK2KaAdL/2gIR0CR1IcXFcY7dX2UKGgGR0BkkG1WsA/+aAdN6ANoCEdAkdhyqEOAiHV9lChoBkdAYoQ0oBq9G2gHTegDaAhHQJHbUBFNL151fZQoaAZHQGATyckMTexoB03oA2gIR0CR3CoYekpJdX2UKGgGR0AyC/u9eyAyaAdL52gIR0CR3WEeQuEmdX2UKGgGR0BxAZBRhttRaAdNdQFoCEdAkd5yKiwjdHV9lChoBkdAcE/KvFFUhmgHTScBaAhHQJHfJvBJqZd1fZQoaAZHQGF0Iq0+kgxoB03oA2gIR0CR374nF5v+dX2UKGgGR0BvAHs1KoQ4aAdNUAFoCEdAkeD9xdY4hnV9lChoBkdARzOhbnoxH2gHS9loCEdAkeUQX2ugYnV9lChoBkdAbDB6BRQ792gHTXICaAhHQJHn3gxagVZ1fZQoaAZHQE6NWLgn+hpoB0vTaAhHQJHo5TIeYD11fZQoaAZHQHBPF+3H7xdoB00CAmgIR0CR7C+HJtBOdX2UKGgGR0Bg/ror4FibaAdN6ANoCEdAke963EyckXV9lChoBkdAbmPevZAY52gHTY0CaAhHQJHyG5BkZrJ1fZQoaAZHQENqVQAMlTpoB0vJaAhHQJH0ODtgKF91fZQoaAZHQG/qaURnOB1oB03hAWgIR0CR9Hxh2GIsdX2UKGgGR0Bujp7mdRR/aAdN/gJoCEdAkfXpH3Dej3V9lChoBkdAa51nrY5DJGgHTdgBaAhHQJH3SKiwjdJ1fZQoaAZHQHKuQGnn+yZoB02sA2gIR0CR+oaKUFB6dX2UKGgGR0BudX+IdlunaAdNCAFoCEdAkfsNTLns9nV9lChoBkdAceGwMYuTR2gHTYMCaAhHQJH8NbcGkep1fZQoaAZHQHNdDZUT+NtoB01jAWgIR0CR/LTURWcSdX2UKGgGR0BfxJ08vEjxaAdN6ANoCEdAkg77dSEUTXV9lChoBkdAP6EwBYFJQWgHS/toCEdAkhA7+5vtMXV9lChoBkdAZUNBvaURnWgHTegDaAhHQJISG+i8Fpx1fZQoaAZHQHICFWbPQfJoB01nAWgIR0CSElL3K0UodX2UKGgGR0BwBlZfUnXvaAdNsgJoCEdAkhKx3u/lAHV9lChoBkdAbX11Fpfx+mgHTfQCaAhHQJITAIa99MN1fZQoaAZHQDZmQA+6iCdoB0vQaAhHQJIUEe4kNWl1fZQoaAZHQHAqXnyNGVloB02MAWgIR0CSFtlkYoAodX2UKGgGR0BxKsQ5FPSEaAdNtgFoCEdAkhb4j0L+gnV9lChoBkdAYZgBHTZxrGgHTegDaAhHQJIXA1YQrc11fZQoaAZHQHJZGHck+otoB00cAWgIR0CSF1iay8jBdX2UKGgGR0Bvm2oYNy5qaAdNowFoCEdAkhks23rleXV9lChoBkdAbQjuy/sVtWgHTSADaAhHQJIa4B/7SAp1fZQoaAZHQHLkmcriEQJoB00vAWgIR0CSHMCv5gw5dX2UKGgGR8AwU/CqIacaaAdL7mgIR0CSHRiUxEfDdX2UKGgGR0BwXrQ7cO9WaAdNQQFoCEdAkiCxNh3JP3V9lChoBkdAcP89YOlO5GgHTVQDaAhHQJIhIOOKfnR1fZQoaAZHQFL+9ph4MWpoB0vDaAhHQJIhejJuEVZ1fZQoaAZHQGyuc4gieNFoB03fAWgIR0CSI2W6shgWdX2UKGgGR0Bv9IzJp35faAdNFAJoCEdAkiaoTTOPenV9lChoBkdAcKUms/6frmgHTZQBaAhHQJIm8QEpy6t1fZQoaAZHQHLA5SBK+SNoB01HAWgIR0CSJxP3BYV7dX2UKGgGR0BynW9rXUYsaAdNFAFoCEdAkiiBISUTtnV9lChoBkdAbtCPVd5Y5mgHTQABaAhHQJIpQfwI+nt1fZQoaAZHQHEJmaUiY9hoB01UAWgIR0CSKfIcR15jdX2UKGgGR0BxCox59mYjaAdNmwJoCEdAkitHJkoWpXV9lChoBkdAQnArMC9ytGgHS9poCEdAki08pLEk0XV9lChoBkdAcarwHJLdvmgHTSMBaAhHQJIt6lnAZbZ1fZQoaAZHQGvSU/wAlv9oB03zAWgIR0CSLpsByS3cdX2UKGgGR0BwTVJlJ6IFaAdNWAFoCEdAkjCNf9gndHV9lChoBkdANXhzNliBoWgHS99oCEdAkjD53xFy73V9lChoBkdAPtLLyMDOkmgHS8hoCEdAkjQAxagVXXV9lChoBkdAbUlkRSP2f2gHTfUCaAhHQJI0Yy44Ia91fZQoaAZHQHB63GOuJUJoB02SAmgIR0CSNYnpB5X2dX2UKGgGR0Bw2tR2r4nGaAdNPgFoCEdAkjZePmxMWXV9lChoBkdAbjLB/qgRLGgHTWkBaAhHQJI4zN8ma6V1fZQoaAZHQEDdyYG+sYFoB0v6aAhHQJI7EjKPn0V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}