File size: 13,747 Bytes
4f9a6f5 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f74e1625120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f74e16251b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74e1625240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74e16252d0>", "_build": "<function ActorCriticPolicy._build at 0x7f74e1625360>", "forward": "<function ActorCriticPolicy.forward at 0x7f74e16253f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f74e1625480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74e1625510>", "_predict": "<function ActorCriticPolicy._predict at 0x7f74e16255a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74e1625630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74e16256c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74e1625750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f74e161ad40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688324540625201679, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPFij32AD+64z2NObNnDjUeX307dhqkuAAAgD8AAIA/jTyLPcO5V7pJhsE5z1rDNFqWAbpGjuO4AACAPwAAgD+ameE3BUs9PqbUWrrWLoe+wjlEPI+CR70AAAAAAAAAAMBTrj3h0KS6ZUzeuzbBWTXmG6Y6M+PItAAAgD8AAIA/5mE6PeTNCzx463i961I/vkMaE72Sr7I9AAAAAAAAAACNDum9ZT8xPxsbVrxgI7K+pea3vcLH07wAAAAAAAAAAJqQ3zxOKP8+236wPeLXmL5AC7k9aCpkOwAAAAAAAAAAAJarPEiLj7p2CJm3acySsnT1izoNLbE2AACAPwAAgD8aTJ+9w8kpusPyHLiz4mSz+V6wOmocMzcAAIA/AAAAADO5n7xvpnk/23DtvLdg9b554pa9VvInvQAAAAAAAAAAZlVqPSkoZLq05oq73itgOHcqQDtG0pQ4AACAPwAAgD+aCZU8KZhUuu6bjLkmSH60T7TPuiG2pTgAAIA/AACAP2b+eTtIxYK6GYY5NguDLzFMEg+7Iu9ltQAAgD8AAIA/U5MpPuqWLD7G1nO+83KNvoqGJz0imow9AAAAAAAAAACa99k9XGNIukyjILgq1Y6zL8U4O56ZODcAAAAAAACAPxqBAL3DaRq685jYutcq4bWnOCW6HSUBOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA5On2qT8qMAWyUTfACjAF0lEdAmIL9EgGKRHV9lChoBkdAYUvmz0HyE2gHTegDaAhHQJiDRKUVzp51fZQoaAZHQHGprvoePq9oB00wAWgIR0CYhBGGVRk3dX2UKGgGR0BwlMl2NedDaAdNCAFoCEdAmITMGcFyJnV9lChoBkdAbizEaVD8cmgHTcoCaAhHQJiFNx1gYxd1fZQoaAZHQGMIX8n/kvNoB03oA2gIR0CYihR+BpYcdX2UKGgGR0BRk0L2HtWuaAdLt2gIR0CYitdkJ8fFdX2UKGgGR0Bhz5SxZ+x4aAdN6ANoCEdAmIwYwEhaDHV9lChoBkdAb0yTLW7OFGgHTQ8BaAhHQJiO5+QU5+91fZQoaAZHQGDH0tyxRl9oB03oA2gIR0CYj+z544ZNdX2UKGgGR0BuRcVclgMMaAdNPQFoCEdAmJQubd8ArHV9lChoBkdAcPZ31zySWGgHTZcBaAhHQJiXK1TisGR1fZQoaAZHQGEJC7kGRmtoB03oA2gIR0CYnXz+WGATdX2UKGgGR0Blo/z6JqIraAdN6ANoCEdAmKGw7DEWI3V9lChoBkdAbqqbNr0rb2gHTQ0BaAhHQJim8hhYvFp1fZQoaAZHQG6lHxz7uUloB03NAWgIR0CYrtu3c580dX2UKGgGR0BgctZPl+3IaAdN6ANoCEdAmLFK7EpAlnV9lChoBkdAcks/zreImGgHTQ8DaAhHQJi0Lz8P4Eh1fZQoaAZHQGyHEYfnwG5oB018A2gIR0CYuLX5nDiwdX2UKGgGR0Bw3G2Yv38GaAdN4ANoCEdAmMwxo7FKkHV9lChoBkdAc11YcvM8o2gHTUcBaAhHQJjNs9lmOEN1fZQoaAZHQHC4Gy9mHxloB03eA2gIR0CYzcPUaybAdX2UKGgGR0BzH5HSWqtHaAdNpAJoCEdAmM3hGpda+3V9lChoBkdAZex/hl18s2gHTegDaAhHQJjOe9QGfPJ1fZQoaAZHQEE6W2PT5O9oB0u/aAhHQJjPthrnDBN1fZQoaAZHQG/ii/XXiBJoB00iAWgIR0CY0Gi4J/oadX2UKGgGR0Bwz45p8F6iaAdNUANoCEdAmNEZ5JK8MHV9lChoBkdAcTGipeeFtmgHTRMCaAhHQJjRmvicXnB1fZQoaAZHQGgN+I/JNj9oB03oA2gIR0CY0fulXRw7dX2UKGgGR0AgypuuRs/IaAdLwWgIR0CY1hr5IpYtdX2UKGgGR0BwfYMDwH7haAdN3QNoCEdAmNZXj+717XV9lChoBkdAcWO1K5Cng2gHTZcBaAhHQJjWxKoQ4CJ1fZQoaAZHQEN2Hs1KoQ5oB0vCaAhHQJjW15iVjZt1fZQoaAZHQHDAuDBdld1oB00CA2gIR0CY14RK6FufdX2UKGgGR0BmhUo8ZDRdaAdN6ANoCEdAmNiQi3XqaHV9lChoBkdAbtNRR/EwWWgHTTkBaAhHQJjaWWszVMF1fZQoaAZHQHLD8Gs3hn9oB00bAWgIR0CY33c/t6X0dX2UKGgGR0Bw2lvDP4VRaAdNMwFoCEdAmOGufmLcbnV9lChoBkdAc5iqoIfKZGgHTcQBaAhHQJjlOFuejEh1fZQoaAZHQHD019ORDCxoB00pAWgIR0CY6QkX1rZbdX2UKGgGR0BwKW5qdpZfaAdNLQFoCEdAmOkvKyOaOXV9lChoBkdAb8QmqHXVb2gHTQ4BaAhHQJjqBOerdWR1fZQoaAZHQHBweYhMajxoB018AmgIR0CY7QkTYdyUdX2UKGgGR0BzDHfcer+6aAdNWQFoCEdAmO11FUhmoXV9lChoBkdAcTpf6oESumgHTXoBaAhHQJjtdpPAO8V1fZQoaAZHQG8irtNSIgxoB008AmgIR0CY7XbC79Q5dX2UKGgGR0ByRyUOd5IIaAdN2gNoCEdAmO5xM8HObHV9lChoBkdAcw73s5XEImgHTZcBaAhHQJjyWoJiRW91fZQoaAZHQEzCChew9q1oB0u+aAhHQJjzMSK3uu11fZQoaAZHQHCN2hysCDFoB01sAWgIR0CY9BemelKsdX2UKGgGR0Bxl3+yZ8a5aAdNxQJoCEdAmPTgYYR/VnV9lChoBkdAQ1Ao3Jgb62gHS8FoCEdAmPVoG2TgVHV9lChoBkdAcotBf8dgfGgHTQoBaAhHQJj1xBMSK3x1fZQoaAZHQHH/CNOuaF5oB013AWgIR0CY+DHXmNipdX2UKGgGR0BumjwjMV1waAdNfwJoCEdAmPiNbxEv03V9lChoBkdAcujF9roGIWgHTSkDaAhHQJj6smY0EYB1fZQoaAZHQHGDkeyRjjJoB01mA2gIR0CY/OBbOeJ6dX2UKGgGR0BU3kUoKD02aAdLwWgIR0CY/cQHiWE9dX2UKGgGR0BzRSjVQQ+VaAdN2gFoCEdAmRC10tAcDXV9lChoBkdAcI2xs2vSt2gHTa8BaAhHQJkRm18b70p1fZQoaAZHQG1Nk+5e7cxoB01LAWgIR0CZEolj3EhrdX2UKGgGR0ByRGc5Ke05aAdN1QFoCEdAmRNH/o7muHV9lChoBkdActzZzgdfcGgHTS4BaAhHQJkU0UHpr1x1fZQoaAZHQHEnv5pJwsJoB00fAmgIR0CZFpjY7JXAdX2UKGgGR0BvmCSowVTKaAdNxQJoCEdAmRbeuA7Pp3V9lChoBkdAb5Ri++M6zWgHTSICaAhHQJkYeN1hb4d1fZQoaAZHQHC8Hw9aEBdoB017AWgIR0CZGKHi3ocJdX2UKGgGR0BPjFj3Ehq1aAdL1WgIR0CZGWZpBX0YdX2UKGgGR0BLp6eXiR4haAdL0mgIR0CZHX1oxpL3dX2UKGgGR0BytSfGuLaVaAdNCgFoCEdAmR58u3+db3V9lChoBkdAcLERRuTA32gHTYIBaAhHQJkfpiy6cy51fZQoaAZHQHEB8rZrYXhoB00lAmgIR0CZIGSqU/wBdX2UKGgGR0ByiJikO7QLaAdNzwFoCEdAmSDzGkvboXV9lChoBkdAcsvFEAo5P2gHTUYCaAhHQJkhAer+5vt1fZQoaAZHQHFp6NVBD5VoB01BAWgIR0CZInlS0jTsdX2UKGgGR0Bt3ysp5NXYaAdNJAFoCEdAmSTilWOp9HV9lChoBkdAcc1NcnmaIGgHTQsBaAhHQJkllBC2MKl1fZQoaAZHQHMLsEq2BrhoB01TAWgIR0CZJZUOuq3mdX2UKGgGR0Bu7EFbFCLNaAdN9wFoCEdAmShMHWz4UXV9lChoBkdAcZ1XPJJXhmgHTRYBaAhHQJkol5ooNNJ1fZQoaAZHQEnlYYBNmDloB0ucaAhHQJkpPhhpg1F1fZQoaAZHQHDUn7DVH4JoB01EAWgIR0CZKke3hGYsdX2UKGgGR0ALZNCZ4Oc2aAdLv2gIR0CZKzj+717IdX2UKGgGR0BxUgSkCV8kaAdNlQJoCEdAmSuvO2RaHXV9lChoBkdAcaky8SPEKmgHTcUBaAhHQJkvljlPrOZ1fZQoaAZHQHHTGxD9fkZoB01qAWgIR0CZL6Z/0/W2dX2UKGgGR0BvbJ2yLQ5WaAdNZwFoCEdAmTEXX2/SIHV9lChoBkdAbwgxbB42TGgHTV4BaAhHQJkxRph4MWp1fZQoaAZHQHJoKCHymQ9oB00hAWgIR0CZMrV1wHZ9dX2UKGgGR0Bw4HXwsoUjaAdL9GgIR0CZMz0waisXdX2UKGgGR0BwzMkUsWfsaAdNXAFoCEdAmTS8S9M9KXV9lChoBkdAcXPzTnaFmGgHTR4BaAhHQJk01hsqJ/J1fZQoaAZHQHDpPfj0cwRoB00uAWgIR0CZNkAaNuLrdX2UKGgGR0ByGjoFFDv3aAdNBQFoCEdAmTaaC+UQkHV9lChoBkdAcqlnYQJ5V2gHTacBaAhHQJk4fdyksSV1fZQoaAZHQHB1wUYbbURoB036AWgIR0CZOaU2DQJHdX2UKGgGR0Bv5ll2/zreaAdNbAFoCEdAmTqF1jiGWXV9lChoBkdAcF6Cq6vq1WgHTQ8BaAhHQJk7Pkkrwvx1fZQoaAZHQG8OV76YVqNoB00YAWgIR0CZPS9zfaYedX2UKGgGR0BvdWbgCOm0aAdNHgFoCEdAmT8ZZB9kSXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |