metadata
language:
- kin
tags:
- NER
datasets:
- masakhaner
metrics:
- f1
- precision
- recall
license: apache-2.0
widget:
- text: >-
Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU
n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika
n’u Burayi.
Model description
mbert-base-uncased-kin is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities:
- dates & time (DATE)
- Location (LOC)
- Organizations (ORG)
- Person (PER)
Intended Use
- Intended to be used for research purposes concerning Named Entity Recognition for African Languages.
- Not intended for practical purposes.
Training Data
This model was fine-tuned on the Kinyarwanda corpus (kin) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups.
Training procedure
This model was trained on a single NVIDIA P5000 from Paperspace
Hyperparameters
- Learning Rate: 5e-5
- Batch Size: 32
- Maximum Sequence Length: 164
- Epochs: 30
Evaluation Data
We evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.
Metrics
- Precision
- Recall
- F1-score
Limitations
- The size of the pre-trained language model prevents its usage in anything other than research.
- Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.
- The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.
Caveats and Recommendations
- The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.
Results
Model Name | Precision | Recall | F1-score |
---|---|---|---|
mbert-base-uncased-kin | 81.35 | 83.98 | 82.64 |
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-kin")
model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-kin")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
ner_results = nlp(example)
print(ner_results)