File size: 132,680 Bytes
736778e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
program(1.0)
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
{
    func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 224]> decoder_key_padding_mask, tensor<fp16, [1, 1280, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 5120, 1, 224]> key_cache, tensor<fp16, [1, 224]> kv_cache_update_mask, tensor<fp16, [1, 5120, 1, 224]> value_cache) {
            tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
            tensor<int32, []> var_24_batch_dims_0 = const()[name = tensor<string, []>("op_24_batch_dims_0"), val = tensor<int32, []>(0)];
            tensor<fp16, [51866, 1280]> embed_tokens_weight_to_fp16 = const()[name = tensor<string, []>("embed_tokens_weight_to_fp16"), val = tensor<fp16, [51866, 1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
            tensor<fp16, [1, 1280]> var_24_cast_fp16 = gather(axis = var_24_axis_0, batch_dims = var_24_batch_dims_0, indices = input_ids, x = embed_tokens_weight_to_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
            tensor<int32, []> var_28_axis_0 = const()[name = tensor<string, []>("op_28_axis_0"), val = tensor<int32, []>(0)];
            tensor<int32, []> var_28_batch_dims_0 = const()[name = tensor<string, []>("op_28_batch_dims_0"), val = tensor<int32, []>(0)];
            tensor<fp16, [448, 1280]> embed_positions_weight_to_fp16 = const()[name = tensor<string, []>("embed_positions_weight_to_fp16"), val = tensor<fp16, [448, 1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132777088)))];
            tensor<fp16, [1, 1280]> var_28_cast_fp16 = gather(axis = var_28_axis_0, batch_dims = var_28_batch_dims_0, indices = cache_length, x = embed_positions_weight_to_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
            tensor<fp16, [1, 1280]> hidden_states_1_cast_fp16 = add(x = var_24_cast_fp16, y = var_28_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
            tensor<int32, [1]> var_42_axes_0 = const()[name = tensor<string, []>("op_42_axes_0"), val = tensor<int32, [1]>([2])];
            tensor<fp16, [1, 1280, 1]> var_42_cast_fp16 = expand_dims(axes = var_42_axes_0, x = hidden_states_1_cast_fp16)[name = tensor<string, []>("op_42_cast_fp16")];
            tensor<int32, [1]> inputs_1_axes_0 = const()[name = tensor<string, []>("inputs_1_axes_0"), val = tensor<int32, [1]>([3])];
            tensor<fp16, [1, 1280, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
            tensor<int32, [4]> tile_0 = const()[name = tensor<string, []>("tile_0"), val = tensor<int32, [4]>([1280, 1280, 1280, 1280])];
            tensor<int32, []> var_47_axis_0 = const()[name = tensor<string, []>("op_47_axis_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1, 1280, 1, 224]> var_47_cast_fp16_0, tensor<fp16, [1, 1280, 1, 224]> var_47_cast_fp16_1, tensor<fp16, [1, 1280, 1, 224]> var_47_cast_fp16_2, tensor<fp16, [1, 1280, 1, 224]> var_47_cast_fp16_3 = split(axis = var_47_axis_0, split_sizes = tile_0, x = key_cache)[name = tensor<string, []>("op_47_cast_fp16")];
            tensor<int32, [4]> tile_1 = const()[name = tensor<string, []>("tile_1"), val = tensor<int32, [4]>([1280, 1280, 1280, 1280])];
            tensor<int32, []> var_54_axis_0 = const()[name = tensor<string, []>("op_54_axis_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1, 1280, 1, 224]> var_54_cast_fp16_0, tensor<fp16, [1, 1280, 1, 224]> var_54_cast_fp16_1, tensor<fp16, [1, 1280, 1, 224]> var_54_cast_fp16_2, tensor<fp16, [1, 1280, 1, 224]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
            tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
            tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_90_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
            tensor<fp16, [1280]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(133924032)))];
            tensor<fp16, [1280]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(133926656)))];
            tensor<fp16, [1280]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(133929280)))];
            tensor<fp16, [1280]> obj_1_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_1_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(133931904)))];
            tensor<fp16, []> obj_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor<string, []>("obj_1_cast_fp16")];
            tensor<string, []> query_1_pad_type_0 = const()[name = tensor<string, []>("query_1_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_1_strides_0 = const()[name = tensor<string, []>("query_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_1_pad_0 = const()[name = tensor<string, []>("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_1_dilations_0 = const()[name = tensor<string, []>("query_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_1_groups_0 = const()[name = tensor<string, []>("query_1_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(133934528)))];
            tensor<fp16, [1280]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(137211392)))];
            tensor<fp16, [1, 1280, 1, 1]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = query_1_dilations_0, groups = query_1_groups_0, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = query_1_strides_0, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("query_1_cast_fp16")];
            tensor<string, []> current_key_1_pad_type_0 = const()[name = tensor<string, []>("current_key_1_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_key_1_strides_0 = const()[name = tensor<string, []>("current_key_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_key_1_pad_0 = const()[name = tensor<string, []>("current_key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_key_1_dilations_0 = const()[name = tensor<string, []>("current_key_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_key_1_groups_0 = const()[name = tensor<string, []>("current_key_1_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(137214016)))];
            tensor<fp16, [1, 1280, 1, 1]> current_key_1_cast_fp16 = conv(dilations = current_key_1_dilations_0, groups = current_key_1_groups_0, pad = current_key_1_pad_0, pad_type = current_key_1_pad_type_0, strides = current_key_1_strides_0, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_key_1_cast_fp16")];
            tensor<string, []> current_value_1_pad_type_0 = const()[name = tensor<string, []>("current_value_1_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_value_1_strides_0 = const()[name = tensor<string, []>("current_value_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_value_1_pad_0 = const()[name = tensor<string, []>("current_value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_value_1_dilations_0 = const()[name = tensor<string, []>("current_value_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_value_1_groups_0 = const()[name = tensor<string, []>("current_value_1_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(140490880)))];
            tensor<fp16, [1280]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(143767744)))];
            tensor<fp16, [1, 1280, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = current_value_1_dilations_0, groups = current_value_1_groups_0, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = current_value_1_strides_0, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_value_1_cast_fp16")];
            tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, [1, 1, 224]> var_125_cast_fp16 = expand_dims(axes = var_125_axes_0, x = kv_cache_update_mask)[name = tensor<string, []>("op_125_cast_fp16")];
            tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([2])];
            tensor<fp16, [1, 1, 1, 224]> var_126_cast_fp16 = expand_dims(axes = var_126_axes_0, x = var_125_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_128_cast_fp16 = mul(x = current_key_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_128_cast_fp16")];
            tensor<fp16, []> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
            tensor<fp16, [1, 1, 1, 224]> var_129_cast_fp16 = sub(x = var_65_to_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_129_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_130_cast_fp16 = mul(x = var_47_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_130_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> key_1_cast_fp16 = add(x = var_128_cast_fp16, y = var_130_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_132_cast_fp16 = mul(x = current_value_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_132_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_134_cast_fp16 = mul(x = var_54_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_134_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> value_1_cast_fp16 = add(x = var_132_cast_fp16, y = var_134_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
            tensor<int32, [4]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_1_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor<string, []>("mh_q_1_cast_fp16")];
            tensor<fp16, []> var_139_to_fp16 = const()[name = tensor<string, []>("op_139_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_140_cast_fp16 = mul(x = mh_q_1_cast_fp16, y = var_139_to_fp16)[name = tensor<string, []>("op_140_cast_fp16")];
            tensor<int32, [4]> var_141 = const()[name = tensor<string, []>("op_141"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_142_cast_fp16 = reshape(shape = var_141, x = key_1_cast_fp16)[name = tensor<string, []>("op_142_cast_fp16")];
            tensor<bool, []> mh_w_1_transpose_x_0 = const()[name = tensor<string, []>("mh_w_1_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_1_transpose_y_0 = const()[name = tensor<string, []>("mh_w_1_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 224]> mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_140_cast_fp16, y = var_142_cast_fp16)[name = tensor<string, []>("mh_w_1_cast_fp16")];
            tensor<int32, [1]> var_146_axes_0 = const()[name = tensor<string, []>("op_146_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, [1, 1, 224]> var_146_cast_fp16 = expand_dims(axes = var_146_axes_0, x = decoder_key_padding_mask)[name = tensor<string, []>("op_146_cast_fp16")];
            tensor<int32, [1]> var_147_axes_0 = const()[name = tensor<string, []>("op_147_axes_0"), val = tensor<int32, [1]>([2])];
            tensor<fp16, [1, 1, 1, 224]> var_147_cast_fp16 = expand_dims(axes = var_147_axes_0, x = var_146_cast_fp16)[name = tensor<string, []>("op_147_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> mh_w_3_cast_fp16 = add(x = mh_w_1_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_3_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> var_150_cast_fp16 = softmax(axis = var_64, x = mh_w_3_cast_fp16)[name = tensor<string, []>("op_150_cast_fp16")];
            tensor<int32, [4]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_152_cast_fp16 = reshape(shape = var_151, x = value_1_cast_fp16)[name = tensor<string, []>("op_152_cast_fp16")];
            tensor<bool, []> attn_1_transpose_x_0 = const()[name = tensor<string, []>("attn_1_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_1_transpose_y_0 = const()[name = tensor<string, []>("attn_1_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor<string, []>("attn_1_cast_fp16")];
            tensor<int32, [4]> var_155 = const()[name = tensor<string, []>("op_155"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_1_cast_fp16 = reshape(shape = var_155, x = attn_1_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
            tensor<string, []> obj_7_pad_type_0 = const()[name = tensor<string, []>("obj_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_7_strides_0 = const()[name = tensor<string, []>("obj_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_7_pad_0 = const()[name = tensor<string, []>("obj_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_7_dilations_0 = const()[name = tensor<string, []>("obj_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_7_groups_0 = const()[name = tensor<string, []>("obj_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(143770368)))];
            tensor<fp16, [1280]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(147047232)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = obj_7_dilations_0, groups = obj_7_groups_0, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = obj_7_strides_0, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
            tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_177_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
            tensor<fp16, [1280]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(147049856)))];
            tensor<fp16, [1280]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(147052480)))];
            tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor<string, []>("obj_9_cast_fp16")];
            tensor<string, []> query_3_pad_type_0 = const()[name = tensor<string, []>("query_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_3_strides_0 = const()[name = tensor<string, []>("query_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_3_pad_0 = const()[name = tensor<string, []>("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_3_dilations_0 = const()[name = tensor<string, []>("query_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_3_groups_0 = const()[name = tensor<string, []>("query_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(147055104)))];
            tensor<fp16, [1280]> layers_0_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(150331968)))];
            tensor<fp16, [1, 1280, 1, 1]> query_3_cast_fp16 = conv(bias = layers_0_encoder_attn_q_proj_bias_to_fp16, dilations = query_3_dilations_0, groups = query_3_groups_0, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = query_3_strides_0, weight = layers_0_encoder_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("query_3_cast_fp16")];
            tensor<string, []> key_3_pad_type_0 = const()[name = tensor<string, []>("key_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> key_3_strides_0 = const()[name = tensor<string, []>("key_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> key_3_pad_0 = const()[name = tensor<string, []>("key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> key_3_dilations_0 = const()[name = tensor<string, []>("key_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> key_3_groups_0 = const()[name = tensor<string, []>("key_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(150334592)))];
            tensor<fp16, [1, 1280, 1, 1500]> key_3_cast_fp16 = conv(dilations = key_3_dilations_0, groups = key_3_groups_0, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = key_3_strides_0, weight = layers_0_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("key_3_cast_fp16")];
            tensor<string, []> value_3_pad_type_0 = const()[name = tensor<string, []>("value_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> value_3_strides_0 = const()[name = tensor<string, []>("value_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> value_3_pad_0 = const()[name = tensor<string, []>("value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> value_3_dilations_0 = const()[name = tensor<string, []>("value_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> value_3_groups_0 = const()[name = tensor<string, []>("value_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(153611456)))];
            tensor<fp16, [1280]> layers_0_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(156888320)))];
            tensor<fp16, [1, 1280, 1, 1500]> value_3_cast_fp16 = conv(bias = layers_0_encoder_attn_v_proj_bias_to_fp16, dilations = value_3_dilations_0, groups = value_3_groups_0, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = value_3_strides_0, weight = layers_0_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("value_3_cast_fp16")];
            tensor<int32, [4]> var_212 = const()[name = tensor<string, []>("op_212"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_3_cast_fp16 = reshape(shape = var_212, x = query_3_cast_fp16)[name = tensor<string, []>("mh_q_3_cast_fp16")];
            tensor<fp16, []> var_214_to_fp16 = const()[name = tensor<string, []>("op_214_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_215_cast_fp16 = mul(x = mh_q_3_cast_fp16, y = var_214_to_fp16)[name = tensor<string, []>("op_215_cast_fp16")];
            tensor<int32, [4]> var_216 = const()[name = tensor<string, []>("op_216"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_217_cast_fp16 = reshape(shape = var_216, x = key_3_cast_fp16)[name = tensor<string, []>("op_217_cast_fp16")];
            tensor<bool, []> mh_w_5_transpose_x_0 = const()[name = tensor<string, []>("mh_w_5_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_5_transpose_y_0 = const()[name = tensor<string, []>("mh_w_5_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 1500]> mh_w_5_cast_fp16 = matmul(transpose_x = mh_w_5_transpose_x_0, transpose_y = mh_w_5_transpose_y_0, x = var_215_cast_fp16, y = var_217_cast_fp16)[name = tensor<string, []>("mh_w_5_cast_fp16")];
            tensor<fp16, [1, 20, 1, 1500]> obj_13_cast_fp16 = softmax(axis = var_64, x = mh_w_5_cast_fp16)[name = tensor<string, []>("obj_13_cast_fp16")];
            tensor<int32, [4]> var_221 = const()[name = tensor<string, []>("op_221"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_222_cast_fp16 = reshape(shape = var_221, x = value_3_cast_fp16)[name = tensor<string, []>("op_222_cast_fp16")];
            tensor<bool, []> attn_3_transpose_x_0 = const()[name = tensor<string, []>("attn_3_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_3_transpose_y_0 = const()[name = tensor<string, []>("attn_3_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_222_cast_fp16, y = obj_13_cast_fp16)[name = tensor<string, []>("attn_3_cast_fp16")];
            tensor<int32, [4]> var_225 = const()[name = tensor<string, []>("op_225"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_3_cast_fp16 = reshape(shape = var_225, x = attn_3_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
            tensor<string, []> obj_11_pad_type_0 = const()[name = tensor<string, []>("obj_11_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_11_strides_0 = const()[name = tensor<string, []>("obj_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_11_pad_0 = const()[name = tensor<string, []>("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_11_dilations_0 = const()[name = tensor<string, []>("obj_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_11_groups_0 = const()[name = tensor<string, []>("obj_11_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(156890944)))];
            tensor<fp16, [1280]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160167808)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = obj_11_dilations_0, groups = obj_11_groups_0, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = obj_11_strides_0, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
            tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_243_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
            tensor<fp16, [1280]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160170432)))];
            tensor<fp16, [1280]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160173056)))];
            tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> input_5_cast_fp16 = batch_norm(beta = input_5_beta_0_to_fp16, epsilon = input_5_epsilon_0_to_fp16, gamma = input_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
            tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> input_7_strides_0 = const()[name = tensor<string, []>("input_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> input_7_dilations_0 = const()[name = tensor<string, []>("input_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> input_7_groups_0 = const()[name = tensor<string, []>("input_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [5120, 1280, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160175680)))];
            tensor<fp16, [5120]> layers_0_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(173282944)))];
            tensor<fp16, [1, 5120, 1, 1]> input_7_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = layers_0_fc1_weight_to_fp16, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
            tensor<string, []> input_9_mode_0 = const()[name = tensor<string, []>("input_9_mode_0"), val = tensor<string, []>("EXACT")];
            tensor<fp16, [1, 5120, 1, 1]> input_9_cast_fp16 = gelu(mode = input_9_mode_0, x = input_7_cast_fp16)[name = tensor<string, []>("input_9_cast_fp16")];
            tensor<string, []> hidden_states_3_pad_type_0 = const()[name = tensor<string, []>("hidden_states_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> hidden_states_3_strides_0 = const()[name = tensor<string, []>("hidden_states_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> hidden_states_3_pad_0 = const()[name = tensor<string, []>("hidden_states_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> hidden_states_3_dilations_0 = const()[name = tensor<string, []>("hidden_states_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> hidden_states_3_groups_0 = const()[name = tensor<string, []>("hidden_states_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 5120, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(173293248)))];
            tensor<fp16, [1280]> layers_0_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(186400512)))];
            tensor<fp16, [1, 1280, 1, 1]> hidden_states_3_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = hidden_states_3_dilations_0, groups = hidden_states_3_groups_0, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = hidden_states_3_strides_0, weight = layers_0_fc2_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("hidden_states_3_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
            tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
            tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_304_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
            tensor<fp16, [1280]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(186403136)))];
            tensor<fp16, [1280]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(186405760)))];
            tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_15_cast_fp16 = batch_norm(beta = obj_15_beta_0_to_fp16, epsilon = obj_15_epsilon_0_to_fp16, gamma = obj_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor<string, []>("obj_15_cast_fp16")];
            tensor<string, []> query_5_pad_type_0 = const()[name = tensor<string, []>("query_5_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_5_strides_0 = const()[name = tensor<string, []>("query_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_5_pad_0 = const()[name = tensor<string, []>("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_5_dilations_0 = const()[name = tensor<string, []>("query_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_5_groups_0 = const()[name = tensor<string, []>("query_5_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(186408384)))];
            tensor<fp16, [1280]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(189685248)))];
            tensor<fp16, [1, 1280, 1, 1]> query_5_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = query_5_dilations_0, groups = query_5_groups_0, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = query_5_strides_0, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor<string, []>("query_5_cast_fp16")];
            tensor<string, []> current_key_3_pad_type_0 = const()[name = tensor<string, []>("current_key_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_key_3_strides_0 = const()[name = tensor<string, []>("current_key_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_key_3_pad_0 = const()[name = tensor<string, []>("current_key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_key_3_dilations_0 = const()[name = tensor<string, []>("current_key_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_key_3_groups_0 = const()[name = tensor<string, []>("current_key_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(189687872)))];
            tensor<fp16, [1, 1280, 1, 1]> current_key_3_cast_fp16 = conv(dilations = current_key_3_dilations_0, groups = current_key_3_groups_0, pad = current_key_3_pad_0, pad_type = current_key_3_pad_type_0, strides = current_key_3_strides_0, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor<string, []>("current_key_3_cast_fp16")];
            tensor<string, []> current_value_3_pad_type_0 = const()[name = tensor<string, []>("current_value_3_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_value_3_strides_0 = const()[name = tensor<string, []>("current_value_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_value_3_pad_0 = const()[name = tensor<string, []>("current_value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_value_3_dilations_0 = const()[name = tensor<string, []>("current_value_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_value_3_groups_0 = const()[name = tensor<string, []>("current_value_3_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(192964736)))];
            tensor<fp16, [1280]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(196241600)))];
            tensor<fp16, [1, 1280, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = current_value_3_dilations_0, groups = current_value_3_groups_0, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = current_value_3_strides_0, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor<string, []>("current_value_3_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_342_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_342_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_344_cast_fp16 = mul(x = var_47_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_344_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> key_5_cast_fp16 = add(x = var_342_cast_fp16, y = var_344_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_346_cast_fp16 = mul(x = current_value_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_346_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_348_cast_fp16 = mul(x = var_54_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_348_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> value_5_cast_fp16 = add(x = var_346_cast_fp16, y = var_348_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
            tensor<int32, [4]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_5_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor<string, []>("mh_q_5_cast_fp16")];
            tensor<fp16, []> var_353_to_fp16 = const()[name = tensor<string, []>("op_353_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_354_cast_fp16 = mul(x = mh_q_5_cast_fp16, y = var_353_to_fp16)[name = tensor<string, []>("op_354_cast_fp16")];
            tensor<int32, [4]> var_355 = const()[name = tensor<string, []>("op_355"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_356_cast_fp16 = reshape(shape = var_355, x = key_5_cast_fp16)[name = tensor<string, []>("op_356_cast_fp16")];
            tensor<bool, []> mh_w_7_transpose_x_0 = const()[name = tensor<string, []>("mh_w_7_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_7_transpose_y_0 = const()[name = tensor<string, []>("mh_w_7_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 224]> mh_w_7_cast_fp16 = matmul(transpose_x = mh_w_7_transpose_x_0, transpose_y = mh_w_7_transpose_y_0, x = var_354_cast_fp16, y = var_356_cast_fp16)[name = tensor<string, []>("mh_w_7_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> mh_w_9_cast_fp16 = add(x = mh_w_7_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_9_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> var_364_cast_fp16 = softmax(axis = var_278, x = mh_w_9_cast_fp16)[name = tensor<string, []>("op_364_cast_fp16")];
            tensor<int32, [4]> var_365 = const()[name = tensor<string, []>("op_365"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_366_cast_fp16 = reshape(shape = var_365, x = value_5_cast_fp16)[name = tensor<string, []>("op_366_cast_fp16")];
            tensor<bool, []> attn_5_transpose_x_0 = const()[name = tensor<string, []>("attn_5_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_5_transpose_y_0 = const()[name = tensor<string, []>("attn_5_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor<string, []>("attn_5_cast_fp16")];
            tensor<int32, [4]> var_369 = const()[name = tensor<string, []>("op_369"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_11_cast_fp16 = reshape(shape = var_369, x = attn_5_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
            tensor<string, []> obj_21_pad_type_0 = const()[name = tensor<string, []>("obj_21_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_21_strides_0 = const()[name = tensor<string, []>("obj_21_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_21_pad_0 = const()[name = tensor<string, []>("obj_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_21_dilations_0 = const()[name = tensor<string, []>("obj_21_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_21_groups_0 = const()[name = tensor<string, []>("obj_21_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(196244224)))];
            tensor<fp16, [1280]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199521088)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = obj_21_dilations_0, groups = obj_21_groups_0, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = obj_21_strides_0, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
            tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_391_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
            tensor<fp16, [1280]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199523712)))];
            tensor<fp16, [1280]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199526336)))];
            tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_23_cast_fp16 = batch_norm(beta = obj_23_beta_0_to_fp16, epsilon = obj_23_epsilon_0_to_fp16, gamma = obj_23_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor<string, []>("obj_23_cast_fp16")];
            tensor<string, []> query_7_pad_type_0 = const()[name = tensor<string, []>("query_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_7_strides_0 = const()[name = tensor<string, []>("query_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_7_pad_0 = const()[name = tensor<string, []>("query_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_7_dilations_0 = const()[name = tensor<string, []>("query_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_7_groups_0 = const()[name = tensor<string, []>("query_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199528960)))];
            tensor<fp16, [1280]> layers_1_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(202805824)))];
            tensor<fp16, [1, 1280, 1, 1]> query_7_cast_fp16 = conv(bias = layers_1_encoder_attn_q_proj_bias_to_fp16, dilations = query_7_dilations_0, groups = query_7_groups_0, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = query_7_strides_0, weight = layers_1_encoder_attn_q_proj_weight_to_fp16, x = obj_23_cast_fp16)[name = tensor<string, []>("query_7_cast_fp16")];
            tensor<string, []> key_7_pad_type_0 = const()[name = tensor<string, []>("key_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> key_7_strides_0 = const()[name = tensor<string, []>("key_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> key_7_pad_0 = const()[name = tensor<string, []>("key_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> key_7_dilations_0 = const()[name = tensor<string, []>("key_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> key_7_groups_0 = const()[name = tensor<string, []>("key_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(202808448)))];
            tensor<fp16, [1, 1280, 1, 1500]> key_7_cast_fp16 = conv(dilations = key_7_dilations_0, groups = key_7_groups_0, pad = key_7_pad_0, pad_type = key_7_pad_type_0, strides = key_7_strides_0, weight = layers_1_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("key_7_cast_fp16")];
            tensor<string, []> value_7_pad_type_0 = const()[name = tensor<string, []>("value_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> value_7_strides_0 = const()[name = tensor<string, []>("value_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> value_7_pad_0 = const()[name = tensor<string, []>("value_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> value_7_dilations_0 = const()[name = tensor<string, []>("value_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> value_7_groups_0 = const()[name = tensor<string, []>("value_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(206085312)))];
            tensor<fp16, [1280]> layers_1_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(209362176)))];
            tensor<fp16, [1, 1280, 1, 1500]> value_7_cast_fp16 = conv(bias = layers_1_encoder_attn_v_proj_bias_to_fp16, dilations = value_7_dilations_0, groups = value_7_groups_0, pad = value_7_pad_0, pad_type = value_7_pad_type_0, strides = value_7_strides_0, weight = layers_1_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("value_7_cast_fp16")];
            tensor<int32, [4]> var_426 = const()[name = tensor<string, []>("op_426"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_7_cast_fp16 = reshape(shape = var_426, x = query_7_cast_fp16)[name = tensor<string, []>("mh_q_7_cast_fp16")];
            tensor<fp16, []> var_428_to_fp16 = const()[name = tensor<string, []>("op_428_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_429_cast_fp16 = mul(x = mh_q_7_cast_fp16, y = var_428_to_fp16)[name = tensor<string, []>("op_429_cast_fp16")];
            tensor<int32, [4]> var_430 = const()[name = tensor<string, []>("op_430"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_431_cast_fp16 = reshape(shape = var_430, x = key_7_cast_fp16)[name = tensor<string, []>("op_431_cast_fp16")];
            tensor<bool, []> mh_w_11_transpose_x_0 = const()[name = tensor<string, []>("mh_w_11_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_11_transpose_y_0 = const()[name = tensor<string, []>("mh_w_11_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 1500]> mh_w_11_cast_fp16 = matmul(transpose_x = mh_w_11_transpose_x_0, transpose_y = mh_w_11_transpose_y_0, x = var_429_cast_fp16, y = var_431_cast_fp16)[name = tensor<string, []>("mh_w_11_cast_fp16")];
            tensor<fp16, [1, 20, 1, 1500]> obj_27_cast_fp16 = softmax(axis = var_278, x = mh_w_11_cast_fp16)[name = tensor<string, []>("obj_27_cast_fp16")];
            tensor<int32, [4]> var_435 = const()[name = tensor<string, []>("op_435"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_436_cast_fp16 = reshape(shape = var_435, x = value_7_cast_fp16)[name = tensor<string, []>("op_436_cast_fp16")];
            tensor<bool, []> attn_7_transpose_x_0 = const()[name = tensor<string, []>("attn_7_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_7_transpose_y_0 = const()[name = tensor<string, []>("attn_7_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_436_cast_fp16, y = obj_27_cast_fp16)[name = tensor<string, []>("attn_7_cast_fp16")];
            tensor<int32, [4]> var_439 = const()[name = tensor<string, []>("op_439"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_13_cast_fp16 = reshape(shape = var_439, x = attn_7_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
            tensor<string, []> obj_25_pad_type_0 = const()[name = tensor<string, []>("obj_25_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_25_strides_0 = const()[name = tensor<string, []>("obj_25_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_25_pad_0 = const()[name = tensor<string, []>("obj_25_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_25_dilations_0 = const()[name = tensor<string, []>("obj_25_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_25_groups_0 = const()[name = tensor<string, []>("obj_25_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(209364800)))];
            tensor<fp16, [1280]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(212641664)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = obj_25_dilations_0, groups = obj_25_groups_0, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = obj_25_strides_0, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
            tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_457_to_fp16 = const()[name = tensor<string, []>("op_457_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_457_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
            tensor<fp16, [1280]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(212644288)))];
            tensor<fp16, [1280]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(212646912)))];
            tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> input_15_cast_fp16 = batch_norm(beta = input_15_beta_0_to_fp16, epsilon = input_15_epsilon_0_to_fp16, gamma = input_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
            tensor<string, []> input_17_pad_type_0 = const()[name = tensor<string, []>("input_17_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> input_17_strides_0 = const()[name = tensor<string, []>("input_17_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> input_17_pad_0 = const()[name = tensor<string, []>("input_17_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> input_17_dilations_0 = const()[name = tensor<string, []>("input_17_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> input_17_groups_0 = const()[name = tensor<string, []>("input_17_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [5120, 1280, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(212649536)))];
            tensor<fp16, [5120]> layers_1_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(225756800)))];
            tensor<fp16, [1, 5120, 1, 1]> input_17_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = layers_1_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("input_17_cast_fp16")];
            tensor<string, []> input_19_mode_0 = const()[name = tensor<string, []>("input_19_mode_0"), val = tensor<string, []>("EXACT")];
            tensor<fp16, [1, 5120, 1, 1]> input_19_cast_fp16 = gelu(mode = input_19_mode_0, x = input_17_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
            tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> hidden_states_5_strides_0 = const()[name = tensor<string, []>("hidden_states_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> hidden_states_5_dilations_0 = const()[name = tensor<string, []>("hidden_states_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> hidden_states_5_groups_0 = const()[name = tensor<string, []>("hidden_states_5_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 5120, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(225767104)))];
            tensor<fp16, [1280]> layers_1_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(238874368)))];
            tensor<fp16, [1, 1280, 1, 1]> hidden_states_5_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = layers_1_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("hidden_states_5_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
            tensor<int32, []> var_492 = const()[name = tensor<string, []>("op_492"), val = tensor<int32, []>(3)];
            tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_518_to_fp16 = const()[name = tensor<string, []>("op_518_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_518_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
            tensor<fp16, [1280]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(238876992)))];
            tensor<fp16, [1280]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(238879616)))];
            tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_29_cast_fp16 = batch_norm(beta = obj_29_beta_0_to_fp16, epsilon = obj_29_epsilon_0_to_fp16, gamma = obj_29_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor<string, []>("obj_29_cast_fp16")];
            tensor<string, []> query_9_pad_type_0 = const()[name = tensor<string, []>("query_9_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_9_strides_0 = const()[name = tensor<string, []>("query_9_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_9_pad_0 = const()[name = tensor<string, []>("query_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_9_dilations_0 = const()[name = tensor<string, []>("query_9_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_9_groups_0 = const()[name = tensor<string, []>("query_9_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(238882240)))];
            tensor<fp16, [1280]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(242159104)))];
            tensor<fp16, [1, 1280, 1, 1]> query_9_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = query_9_dilations_0, groups = query_9_groups_0, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = query_9_strides_0, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor<string, []>("query_9_cast_fp16")];
            tensor<string, []> current_key_5_pad_type_0 = const()[name = tensor<string, []>("current_key_5_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_key_5_strides_0 = const()[name = tensor<string, []>("current_key_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_key_5_pad_0 = const()[name = tensor<string, []>("current_key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_key_5_dilations_0 = const()[name = tensor<string, []>("current_key_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_key_5_groups_0 = const()[name = tensor<string, []>("current_key_5_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(242161728)))];
            tensor<fp16, [1, 1280, 1, 1]> current_key_5_cast_fp16 = conv(dilations = current_key_5_dilations_0, groups = current_key_5_groups_0, pad = current_key_5_pad_0, pad_type = current_key_5_pad_type_0, strides = current_key_5_strides_0, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor<string, []>("current_key_5_cast_fp16")];
            tensor<string, []> current_value_5_pad_type_0 = const()[name = tensor<string, []>("current_value_5_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_value_5_strides_0 = const()[name = tensor<string, []>("current_value_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_value_5_pad_0 = const()[name = tensor<string, []>("current_value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_value_5_dilations_0 = const()[name = tensor<string, []>("current_value_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_value_5_groups_0 = const()[name = tensor<string, []>("current_value_5_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(245438592)))];
            tensor<fp16, [1280]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(248715456)))];
            tensor<fp16, [1, 1280, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = current_value_5_dilations_0, groups = current_value_5_groups_0, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = current_value_5_strides_0, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor<string, []>("current_value_5_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_556_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_556_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_558_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_558_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> key_9_cast_fp16 = add(x = var_556_cast_fp16, y = var_558_cast_fp16)[name = tensor<string, []>("key_9_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_560_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_560_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_562_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_562_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> value_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor<string, []>("value_9_cast_fp16")];
            tensor<int32, [4]> var_565 = const()[name = tensor<string, []>("op_565"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_9_cast_fp16 = reshape(shape = var_565, x = query_9_cast_fp16)[name = tensor<string, []>("mh_q_9_cast_fp16")];
            tensor<fp16, []> var_567_to_fp16 = const()[name = tensor<string, []>("op_567_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_568_cast_fp16 = mul(x = mh_q_9_cast_fp16, y = var_567_to_fp16)[name = tensor<string, []>("op_568_cast_fp16")];
            tensor<int32, [4]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_570_cast_fp16 = reshape(shape = var_569, x = key_9_cast_fp16)[name = tensor<string, []>("op_570_cast_fp16")];
            tensor<bool, []> mh_w_13_transpose_x_0 = const()[name = tensor<string, []>("mh_w_13_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_13_transpose_y_0 = const()[name = tensor<string, []>("mh_w_13_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 224]> mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_568_cast_fp16, y = var_570_cast_fp16)[name = tensor<string, []>("mh_w_13_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_15_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> var_578_cast_fp16 = softmax(axis = var_492, x = mh_w_15_cast_fp16)[name = tensor<string, []>("op_578_cast_fp16")];
            tensor<int32, [4]> var_579 = const()[name = tensor<string, []>("op_579"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_580_cast_fp16 = reshape(shape = var_579, x = value_9_cast_fp16)[name = tensor<string, []>("op_580_cast_fp16")];
            tensor<bool, []> attn_9_transpose_x_0 = const()[name = tensor<string, []>("attn_9_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_9_transpose_y_0 = const()[name = tensor<string, []>("attn_9_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_580_cast_fp16, y = var_578_cast_fp16)[name = tensor<string, []>("attn_9_cast_fp16")];
            tensor<int32, [4]> var_583 = const()[name = tensor<string, []>("op_583"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_21_cast_fp16 = reshape(shape = var_583, x = attn_9_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
            tensor<string, []> obj_35_pad_type_0 = const()[name = tensor<string, []>("obj_35_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_35_strides_0 = const()[name = tensor<string, []>("obj_35_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_35_pad_0 = const()[name = tensor<string, []>("obj_35_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_35_dilations_0 = const()[name = tensor<string, []>("obj_35_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_35_groups_0 = const()[name = tensor<string, []>("obj_35_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(248718080)))];
            tensor<fp16, [1280]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(251994944)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = obj_35_dilations_0, groups = obj_35_groups_0, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = obj_35_strides_0, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
            tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_605_to_fp16 = const()[name = tensor<string, []>("op_605_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_605_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
            tensor<fp16, [1280]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(251997568)))];
            tensor<fp16, [1280]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(252000192)))];
            tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_37_cast_fp16 = batch_norm(beta = obj_37_beta_0_to_fp16, epsilon = obj_37_epsilon_0_to_fp16, gamma = obj_37_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor<string, []>("obj_37_cast_fp16")];
            tensor<string, []> query_11_pad_type_0 = const()[name = tensor<string, []>("query_11_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_11_strides_0 = const()[name = tensor<string, []>("query_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_11_pad_0 = const()[name = tensor<string, []>("query_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_11_dilations_0 = const()[name = tensor<string, []>("query_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_11_groups_0 = const()[name = tensor<string, []>("query_11_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(252002816)))];
            tensor<fp16, [1280]> layers_2_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(255279680)))];
            tensor<fp16, [1, 1280, 1, 1]> query_11_cast_fp16 = conv(bias = layers_2_encoder_attn_q_proj_bias_to_fp16, dilations = query_11_dilations_0, groups = query_11_groups_0, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = query_11_strides_0, weight = layers_2_encoder_attn_q_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor<string, []>("query_11_cast_fp16")];
            tensor<string, []> key_11_pad_type_0 = const()[name = tensor<string, []>("key_11_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> key_11_strides_0 = const()[name = tensor<string, []>("key_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> key_11_pad_0 = const()[name = tensor<string, []>("key_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> key_11_dilations_0 = const()[name = tensor<string, []>("key_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> key_11_groups_0 = const()[name = tensor<string, []>("key_11_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(255282304)))];
            tensor<fp16, [1, 1280, 1, 1500]> key_11_cast_fp16 = conv(dilations = key_11_dilations_0, groups = key_11_groups_0, pad = key_11_pad_0, pad_type = key_11_pad_type_0, strides = key_11_strides_0, weight = layers_2_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("key_11_cast_fp16")];
            tensor<string, []> value_11_pad_type_0 = const()[name = tensor<string, []>("value_11_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> value_11_strides_0 = const()[name = tensor<string, []>("value_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> value_11_pad_0 = const()[name = tensor<string, []>("value_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> value_11_dilations_0 = const()[name = tensor<string, []>("value_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> value_11_groups_0 = const()[name = tensor<string, []>("value_11_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(258559168)))];
            tensor<fp16, [1280]> layers_2_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(261836032)))];
            tensor<fp16, [1, 1280, 1, 1500]> value_11_cast_fp16 = conv(bias = layers_2_encoder_attn_v_proj_bias_to_fp16, dilations = value_11_dilations_0, groups = value_11_groups_0, pad = value_11_pad_0, pad_type = value_11_pad_type_0, strides = value_11_strides_0, weight = layers_2_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("value_11_cast_fp16")];
            tensor<int32, [4]> var_640 = const()[name = tensor<string, []>("op_640"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_11_cast_fp16 = reshape(shape = var_640, x = query_11_cast_fp16)[name = tensor<string, []>("mh_q_11_cast_fp16")];
            tensor<fp16, []> var_642_to_fp16 = const()[name = tensor<string, []>("op_642_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_643_cast_fp16 = mul(x = mh_q_11_cast_fp16, y = var_642_to_fp16)[name = tensor<string, []>("op_643_cast_fp16")];
            tensor<int32, [4]> var_644 = const()[name = tensor<string, []>("op_644"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_645_cast_fp16 = reshape(shape = var_644, x = key_11_cast_fp16)[name = tensor<string, []>("op_645_cast_fp16")];
            tensor<bool, []> mh_w_17_transpose_x_0 = const()[name = tensor<string, []>("mh_w_17_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_17_transpose_y_0 = const()[name = tensor<string, []>("mh_w_17_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 1500]> mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_643_cast_fp16, y = var_645_cast_fp16)[name = tensor<string, []>("mh_w_17_cast_fp16")];
            tensor<fp16, [1, 20, 1, 1500]> obj_41_cast_fp16 = softmax(axis = var_492, x = mh_w_17_cast_fp16)[name = tensor<string, []>("obj_41_cast_fp16")];
            tensor<int32, [4]> var_649 = const()[name = tensor<string, []>("op_649"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_650_cast_fp16 = reshape(shape = var_649, x = value_11_cast_fp16)[name = tensor<string, []>("op_650_cast_fp16")];
            tensor<bool, []> attn_11_transpose_x_0 = const()[name = tensor<string, []>("attn_11_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_11_transpose_y_0 = const()[name = tensor<string, []>("attn_11_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_650_cast_fp16, y = obj_41_cast_fp16)[name = tensor<string, []>("attn_11_cast_fp16")];
            tensor<int32, [4]> var_653 = const()[name = tensor<string, []>("op_653"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_23_cast_fp16 = reshape(shape = var_653, x = attn_11_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
            tensor<string, []> obj_39_pad_type_0 = const()[name = tensor<string, []>("obj_39_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_39_strides_0 = const()[name = tensor<string, []>("obj_39_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_39_pad_0 = const()[name = tensor<string, []>("obj_39_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_39_dilations_0 = const()[name = tensor<string, []>("obj_39_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_39_groups_0 = const()[name = tensor<string, []>("obj_39_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(261838656)))];
            tensor<fp16, [1280]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(265115520)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = obj_39_dilations_0, groups = obj_39_groups_0, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = obj_39_strides_0, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
            tensor<int32, [1]> out_17_axes_0 = const()[name = tensor<string, []>("out_17_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_674_to_fp16 = const()[name = tensor<string, []>("op_674_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_674_to_fp16, x = inputs_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
            tensor<fp16, [1280]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(265118144)))];
            tensor<fp16, [1280]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(265120768)))];
            tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> input_25_cast_fp16 = batch_norm(beta = input_25_beta_0_to_fp16, epsilon = input_25_epsilon_0_to_fp16, gamma = input_25_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_17_cast_fp16)[name = tensor<string, []>("input_25_cast_fp16")];
            tensor<string, []> input_27_pad_type_0 = const()[name = tensor<string, []>("input_27_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> input_27_strides_0 = const()[name = tensor<string, []>("input_27_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> input_27_pad_0 = const()[name = tensor<string, []>("input_27_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> input_27_dilations_0 = const()[name = tensor<string, []>("input_27_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> input_27_groups_0 = const()[name = tensor<string, []>("input_27_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [5120, 1280, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(265123392)))];
            tensor<fp16, [5120]> layers_2_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(278230656)))];
            tensor<fp16, [1, 5120, 1, 1]> input_27_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = input_27_dilations_0, groups = input_27_groups_0, pad = input_27_pad_0, pad_type = input_27_pad_type_0, strides = input_27_strides_0, weight = layers_2_fc1_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
            tensor<string, []> input_29_mode_0 = const()[name = tensor<string, []>("input_29_mode_0"), val = tensor<string, []>("EXACT")];
            tensor<fp16, [1, 5120, 1, 1]> input_29_cast_fp16 = gelu(mode = input_29_mode_0, x = input_27_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
            tensor<string, []> hidden_states_7_pad_type_0 = const()[name = tensor<string, []>("hidden_states_7_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> hidden_states_7_strides_0 = const()[name = tensor<string, []>("hidden_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = tensor<string, []>("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> hidden_states_7_dilations_0 = const()[name = tensor<string, []>("hidden_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> hidden_states_7_groups_0 = const()[name = tensor<string, []>("hidden_states_7_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 5120, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(278240960)))];
            tensor<fp16, [1280]> layers_2_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(291348224)))];
            tensor<fp16, [1, 1280, 1, 1]> hidden_states_7_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = layers_2_fc2_weight_to_fp16, x = input_29_cast_fp16)[name = tensor<string, []>("hidden_states_7_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
            tensor<int32, []> var_710 = const()[name = tensor<string, []>("op_710"), val = tensor<int32, []>(3)];
            tensor<int32, [1]> out_19_axes_0 = const()[name = tensor<string, []>("out_19_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_736_to_fp16 = const()[name = tensor<string, []>("op_736_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_736_to_fp16, x = inputs_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
            tensor<fp16, [1280]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(291350848)))];
            tensor<fp16, [1280]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(291353472)))];
            tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_43_cast_fp16 = batch_norm(beta = obj_43_beta_0_to_fp16, epsilon = obj_43_epsilon_0_to_fp16, gamma = obj_43_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_19_cast_fp16)[name = tensor<string, []>("obj_43_cast_fp16")];
            tensor<string, []> query_13_pad_type_0 = const()[name = tensor<string, []>("query_13_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_13_strides_0 = const()[name = tensor<string, []>("query_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_13_pad_0 = const()[name = tensor<string, []>("query_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_13_dilations_0 = const()[name = tensor<string, []>("query_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_13_groups_0 = const()[name = tensor<string, []>("query_13_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(291356096)))];
            tensor<fp16, [1280]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(294632960)))];
            tensor<fp16, [1, 1280, 1, 1]> query_13_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = query_13_dilations_0, groups = query_13_groups_0, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = query_13_strides_0, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor<string, []>("query_13_cast_fp16")];
            tensor<string, []> current_key_pad_type_0 = const()[name = tensor<string, []>("current_key_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_key_strides_0 = const()[name = tensor<string, []>("current_key_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_key_pad_0 = const()[name = tensor<string, []>("current_key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_key_dilations_0 = const()[name = tensor<string, []>("current_key_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_key_groups_0 = const()[name = tensor<string, []>("current_key_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(294635584)))];
            tensor<fp16, [1, 1280, 1, 1]> current_key_cast_fp16 = conv(dilations = current_key_dilations_0, groups = current_key_groups_0, pad = current_key_pad_0, pad_type = current_key_pad_type_0, strides = current_key_strides_0, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor<string, []>("current_key_cast_fp16")];
            tensor<string, []> current_value_pad_type_0 = const()[name = tensor<string, []>("current_value_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> current_value_strides_0 = const()[name = tensor<string, []>("current_value_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> current_value_pad_0 = const()[name = tensor<string, []>("current_value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> current_value_dilations_0 = const()[name = tensor<string, []>("current_value_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> current_value_groups_0 = const()[name = tensor<string, []>("current_value_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(297912448)))];
            tensor<fp16, [1280]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(301189312)))];
            tensor<fp16, [1, 1280, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = current_value_dilations_0, groups = current_value_groups_0, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = current_value_strides_0, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor<string, []>("current_value_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_774_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_774_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_776_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_776_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> key_13_cast_fp16 = add(x = var_774_cast_fp16, y = var_776_cast_fp16)[name = tensor<string, []>("key_13_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_778_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_778_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> var_780_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_780_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 224]> value_13_cast_fp16 = add(x = var_778_cast_fp16, y = var_780_cast_fp16)[name = tensor<string, []>("value_13_cast_fp16")];
            tensor<int32, [4]> var_783 = const()[name = tensor<string, []>("op_783"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_13_cast_fp16 = reshape(shape = var_783, x = query_13_cast_fp16)[name = tensor<string, []>("mh_q_13_cast_fp16")];
            tensor<fp16, []> var_785_to_fp16 = const()[name = tensor<string, []>("op_785_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_786_cast_fp16 = mul(x = mh_q_13_cast_fp16, y = var_785_to_fp16)[name = tensor<string, []>("op_786_cast_fp16")];
            tensor<int32, [4]> var_787 = const()[name = tensor<string, []>("op_787"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_788_cast_fp16 = reshape(shape = var_787, x = key_13_cast_fp16)[name = tensor<string, []>("op_788_cast_fp16")];
            tensor<bool, []> mh_w_19_transpose_x_0 = const()[name = tensor<string, []>("mh_w_19_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_19_transpose_y_0 = const()[name = tensor<string, []>("mh_w_19_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 224]> mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_786_cast_fp16, y = var_788_cast_fp16)[name = tensor<string, []>("mh_w_19_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> mh_w_21_cast_fp16 = add(x = mh_w_19_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_21_cast_fp16")];
            tensor<fp16, [1, 20, 1, 224]> var_796_cast_fp16 = softmax(axis = var_710, x = mh_w_21_cast_fp16)[name = tensor<string, []>("op_796_cast_fp16")];
            tensor<int32, [4]> var_797 = const()[name = tensor<string, []>("op_797"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 224]> var_798_cast_fp16 = reshape(shape = var_797, x = value_13_cast_fp16)[name = tensor<string, []>("op_798_cast_fp16")];
            tensor<bool, []> attn_13_transpose_x_0 = const()[name = tensor<string, []>("attn_13_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_13_transpose_y_0 = const()[name = tensor<string, []>("attn_13_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_798_cast_fp16, y = var_796_cast_fp16)[name = tensor<string, []>("attn_13_cast_fp16")];
            tensor<int32, [4]> var_801 = const()[name = tensor<string, []>("op_801"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_31_cast_fp16 = reshape(shape = var_801, x = attn_13_cast_fp16)[name = tensor<string, []>("input_31_cast_fp16")];
            tensor<string, []> obj_49_pad_type_0 = const()[name = tensor<string, []>("obj_49_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_49_strides_0 = const()[name = tensor<string, []>("obj_49_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_49_pad_0 = const()[name = tensor<string, []>("obj_49_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_49_dilations_0 = const()[name = tensor<string, []>("obj_49_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_49_groups_0 = const()[name = tensor<string, []>("obj_49_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(301191936)))];
            tensor<fp16, [1280]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304468800)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = obj_49_dilations_0, groups = obj_49_groups_0, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = obj_49_strides_0, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
            tensor<int32, [1]> out_21_axes_0 = const()[name = tensor<string, []>("out_21_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_823_to_fp16 = const()[name = tensor<string, []>("op_823_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_823_to_fp16, x = inputs_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
            tensor<fp16, [1280]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304471424)))];
            tensor<fp16, [1280]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304474048)))];
            tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> obj_51_cast_fp16 = batch_norm(beta = obj_51_beta_0_to_fp16, epsilon = obj_51_epsilon_0_to_fp16, gamma = obj_51_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_21_cast_fp16)[name = tensor<string, []>("obj_51_cast_fp16")];
            tensor<string, []> query_pad_type_0 = const()[name = tensor<string, []>("query_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> query_strides_0 = const()[name = tensor<string, []>("query_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> query_pad_0 = const()[name = tensor<string, []>("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> query_dilations_0 = const()[name = tensor<string, []>("query_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> query_groups_0 = const()[name = tensor<string, []>("query_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(304476672)))];
            tensor<fp16, [1280]> layers_3_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(307753536)))];
            tensor<fp16, [1, 1280, 1, 1]> query_cast_fp16 = conv(bias = layers_3_encoder_attn_q_proj_bias_to_fp16, dilations = query_dilations_0, groups = query_groups_0, pad = query_pad_0, pad_type = query_pad_type_0, strides = query_strides_0, weight = layers_3_encoder_attn_q_proj_weight_to_fp16, x = obj_51_cast_fp16)[name = tensor<string, []>("query_cast_fp16")];
            tensor<string, []> key_pad_type_0 = const()[name = tensor<string, []>("key_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> key_strides_0 = const()[name = tensor<string, []>("key_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> key_pad_0 = const()[name = tensor<string, []>("key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> key_dilations_0 = const()[name = tensor<string, []>("key_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> key_groups_0 = const()[name = tensor<string, []>("key_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(307756160)))];
            tensor<fp16, [1, 1280, 1, 1500]> key_cast_fp16 = conv(dilations = key_dilations_0, groups = key_groups_0, pad = key_pad_0, pad_type = key_pad_type_0, strides = key_strides_0, weight = layers_3_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("key_cast_fp16")];
            tensor<string, []> value_pad_type_0 = const()[name = tensor<string, []>("value_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> value_strides_0 = const()[name = tensor<string, []>("value_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> value_pad_0 = const()[name = tensor<string, []>("value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> value_dilations_0 = const()[name = tensor<string, []>("value_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> value_groups_0 = const()[name = tensor<string, []>("value_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(311033024)))];
            tensor<fp16, [1280]> layers_3_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(314309888)))];
            tensor<fp16, [1, 1280, 1, 1500]> value_cast_fp16 = conv(bias = layers_3_encoder_attn_v_proj_bias_to_fp16, dilations = value_dilations_0, groups = value_groups_0, pad = value_pad_0, pad_type = value_pad_type_0, strides = value_strides_0, weight = layers_3_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor<string, []>("value_cast_fp16")];
            tensor<int32, [4]> var_858 = const()[name = tensor<string, []>("op_858"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1]> mh_q_cast_fp16 = reshape(shape = var_858, x = query_cast_fp16)[name = tensor<string, []>("mh_q_cast_fp16")];
            tensor<fp16, []> var_860_to_fp16 = const()[name = tensor<string, []>("op_860_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
            tensor<fp16, [1, 20, 64, 1]> var_861_cast_fp16 = mul(x = mh_q_cast_fp16, y = var_860_to_fp16)[name = tensor<string, []>("op_861_cast_fp16")];
            tensor<int32, [4]> var_862 = const()[name = tensor<string, []>("op_862"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_863_cast_fp16 = reshape(shape = var_862, x = key_cast_fp16)[name = tensor<string, []>("op_863_cast_fp16")];
            tensor<bool, []> mh_w_transpose_x_0 = const()[name = tensor<string, []>("mh_w_transpose_x_0"), val = tensor<bool, []>(true)];
            tensor<bool, []> mh_w_transpose_y_0 = const()[name = tensor<string, []>("mh_w_transpose_y_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 20, 1, 1500]> mh_w_cast_fp16 = matmul(transpose_x = mh_w_transpose_x_0, transpose_y = mh_w_transpose_y_0, x = var_861_cast_fp16, y = var_863_cast_fp16)[name = tensor<string, []>("mh_w_cast_fp16")];
            tensor<fp16, [1, 20, 1, 1500]> obj_55_cast_fp16 = softmax(axis = var_710, x = mh_w_cast_fp16)[name = tensor<string, []>("obj_55_cast_fp16")];
            tensor<int32, [4]> var_867 = const()[name = tensor<string, []>("op_867"), val = tensor<int32, [4]>([1, 20, 64, -1])];
            tensor<fp16, [1, 20, 64, 1500]> var_868_cast_fp16 = reshape(shape = var_867, x = value_cast_fp16)[name = tensor<string, []>("op_868_cast_fp16")];
            tensor<bool, []> attn_transpose_x_0 = const()[name = tensor<string, []>("attn_transpose_x_0"), val = tensor<bool, []>(false)];
            tensor<bool, []> attn_transpose_y_0 = const()[name = tensor<string, []>("attn_transpose_y_0"), val = tensor<bool, []>(true)];
            tensor<fp16, [1, 20, 64, 1]> attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_868_cast_fp16, y = obj_55_cast_fp16)[name = tensor<string, []>("attn_cast_fp16")];
            tensor<int32, [4]> var_871 = const()[name = tensor<string, []>("op_871"), val = tensor<int32, [4]>([1, 1280, 1, -1])];
            tensor<fp16, [1, 1280, 1, 1]> input_33_cast_fp16 = reshape(shape = var_871, x = attn_cast_fp16)[name = tensor<string, []>("input_33_cast_fp16")];
            tensor<string, []> obj_53_pad_type_0 = const()[name = tensor<string, []>("obj_53_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> obj_53_strides_0 = const()[name = tensor<string, []>("obj_53_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> obj_53_pad_0 = const()[name = tensor<string, []>("obj_53_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> obj_53_dilations_0 = const()[name = tensor<string, []>("obj_53_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> obj_53_groups_0 = const()[name = tensor<string, []>("obj_53_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(314312512)))];
            tensor<fp16, [1280]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317589376)))];
            tensor<fp16, [1, 1280, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = obj_53_dilations_0, groups = obj_53_groups_0, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = obj_53_strides_0, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
            tensor<int32, [1]> out_23_axes_0 = const()[name = tensor<string, []>("out_23_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_892_to_fp16 = const()[name = tensor<string, []>("op_892_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_892_to_fp16, x = inputs_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
            tensor<fp16, [1280]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317592000)))];
            tensor<fp16, [1280]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317594624)))];
            tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> input_35_cast_fp16 = batch_norm(beta = input_35_beta_0_to_fp16, epsilon = input_35_epsilon_0_to_fp16, gamma = input_35_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_23_cast_fp16)[name = tensor<string, []>("input_35_cast_fp16")];
            tensor<string, []> input_37_pad_type_0 = const()[name = tensor<string, []>("input_37_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> input_37_strides_0 = const()[name = tensor<string, []>("input_37_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> input_37_pad_0 = const()[name = tensor<string, []>("input_37_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> input_37_dilations_0 = const()[name = tensor<string, []>("input_37_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> input_37_groups_0 = const()[name = tensor<string, []>("input_37_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [5120, 1280, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(317597248)))];
            tensor<fp16, [5120]> layers_3_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(330704512)))];
            tensor<fp16, [1, 5120, 1, 1]> input_37_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = input_37_dilations_0, groups = input_37_groups_0, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = input_37_strides_0, weight = layers_3_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = tensor<string, []>("input_37_cast_fp16")];
            tensor<string, []> input_mode_0 = const()[name = tensor<string, []>("input_mode_0"), val = tensor<string, []>("EXACT")];
            tensor<fp16, [1, 5120, 1, 1]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_37_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
            tensor<string, []> hidden_states_9_pad_type_0 = const()[name = tensor<string, []>("hidden_states_9_pad_type_0"), val = tensor<string, []>("valid")];
            tensor<int32, [2]> hidden_states_9_strides_0 = const()[name = tensor<string, []>("hidden_states_9_strides_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = tensor<string, []>("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [2]> hidden_states_9_dilations_0 = const()[name = tensor<string, []>("hidden_states_9_dilations_0"), val = tensor<int32, [2]>([1, 1])];
            tensor<int32, []> hidden_states_9_groups_0 = const()[name = tensor<string, []>("hidden_states_9_groups_0"), val = tensor<int32, []>(1)];
            tensor<fp16, [1280, 5120, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(330714816)))];
            tensor<fp16, [1280]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(343822080)))];
            tensor<fp16, [1, 1280, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
            tensor<fp16, [1, 1280, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
            tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, []> var_935_to_fp16 = const()[name = tensor<string, []>("op_935_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_935_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
            tensor<fp16, [1280]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(343824704)))];
            tensor<fp16, [1280]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(343827328)))];
            tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
            tensor<fp16, [1, 1280, 1, 1]> hidden_states_cast_fp16 = batch_norm(beta = hidden_states_beta_0_to_fp16, epsilon = hidden_states_epsilon_0_to_fp16, gamma = hidden_states_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
            tensor<int32, [1]> var_946_axes_0 = const()[name = tensor<string, []>("op_946_axes_0"), val = tensor<int32, [1]>([2])];
            tensor<fp16, [1, 1280, 1]> var_946_cast_fp16 = squeeze(axes = var_946_axes_0, x = hidden_states_cast_fp16)[name = tensor<string, []>("op_946_cast_fp16")];
            tensor<int32, [3]> var_949_perm_0 = const()[name = tensor<string, []>("op_949_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
            tensor<fp16, [51866]> linear_0_bias_0_to_fp16 = const()[name = tensor<string, []>("linear_0_bias_0_to_fp16"), val = tensor<fp16, [51866]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(343829952)))];
            tensor<fp16, [1, 1, 1280]> var_949_cast_fp16 = transpose(perm = var_949_perm_0, x = var_946_cast_fp16)[name = tensor<string, []>("transpose_0")];
            tensor<fp16, [1, 1, 51866]> logits = linear(bias = linear_0_bias_0_to_fp16, weight = embed_tokens_weight_to_fp16, x = var_949_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
            tensor<int32, []> var_953 = const()[name = tensor<string, []>("op_953"), val = tensor<int32, []>(1)];
            tensor<bool, []> obj_59_interleave_0 = const()[name = tensor<string, []>("obj_59_interleave_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 5120, 1, 1]> key_cache_updates = concat(axis = var_953, interleave = obj_59_interleave_0, values = (current_key_1_cast_fp16, current_key_3_cast_fp16, current_key_5_cast_fp16, current_key_cast_fp16))[name = tensor<string, []>("obj_59_cast_fp16")];
            tensor<int32, []> var_956 = const()[name = tensor<string, []>("op_956"), val = tensor<int32, []>(1)];
            tensor<bool, []> obj_61_interleave_0 = const()[name = tensor<string, []>("obj_61_interleave_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 5120, 1, 1]> value_cache_updates = concat(axis = var_956, interleave = obj_61_interleave_0, values = (current_value_1_cast_fp16, current_value_3_cast_fp16, current_value_5_cast_fp16, current_value_cast_fp16))[name = tensor<string, []>("obj_61_cast_fp16")];
            tensor<int32, [4]> var_967_begin_0 = const()[name = tensor<string, []>("op_967_begin_0"), val = tensor<int32, [4]>([0, 4, 0, 0])];
            tensor<int32, [4]> var_967_end_0 = const()[name = tensor<string, []>("op_967_end_0"), val = tensor<int32, [4]>([1, 5, 1, 1500])];
            tensor<bool, [4]> var_967_end_mask_0 = const()[name = tensor<string, []>("op_967_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_967_cast_fp16 = slice_by_index(begin = var_967_begin_0, end = var_967_end_0, end_mask = var_967_end_mask_0, x = obj_41_cast_fp16)[name = tensor<string, []>("op_967_cast_fp16")];
            tensor<int32, [4]> var_970_begin_0 = const()[name = tensor<string, []>("op_970_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_970_end_0 = const()[name = tensor<string, []>("op_970_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_970_end_mask_0 = const()[name = tensor<string, []>("op_970_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_970_squeeze_mask_0 = const()[name = tensor<string, []>("op_970_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_970_cast_fp16 = slice_by_index(begin = var_970_begin_0, end = var_970_end_0, end_mask = var_970_end_mask_0, squeeze_mask = var_970_squeeze_mask_0, x = var_967_cast_fp16)[name = tensor<string, []>("op_970_cast_fp16")];
            tensor<int32, [4]> var_985_begin_0 = const()[name = tensor<string, []>("op_985_begin_0"), val = tensor<int32, [4]>([0, 11, 0, 0])];
            tensor<int32, [4]> var_985_end_0 = const()[name = tensor<string, []>("op_985_end_0"), val = tensor<int32, [4]>([1, 12, 1, 1500])];
            tensor<bool, [4]> var_985_end_mask_0 = const()[name = tensor<string, []>("op_985_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_985_cast_fp16 = slice_by_index(begin = var_985_begin_0, end = var_985_end_0, end_mask = var_985_end_mask_0, x = obj_41_cast_fp16)[name = tensor<string, []>("op_985_cast_fp16")];
            tensor<int32, [4]> var_988_begin_0 = const()[name = tensor<string, []>("op_988_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_988_end_0 = const()[name = tensor<string, []>("op_988_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_988_end_mask_0 = const()[name = tensor<string, []>("op_988_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_988_squeeze_mask_0 = const()[name = tensor<string, []>("op_988_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_988_cast_fp16 = slice_by_index(begin = var_988_begin_0, end = var_988_end_0, end_mask = var_988_end_mask_0, squeeze_mask = var_988_squeeze_mask_0, x = var_985_cast_fp16)[name = tensor<string, []>("op_988_cast_fp16")];
            tensor<int32, [4]> var_1003_begin_0 = const()[name = tensor<string, []>("op_1003_begin_0"), val = tensor<int32, [4]>([0, 3, 0, 0])];
            tensor<int32, [4]> var_1003_end_0 = const()[name = tensor<string, []>("op_1003_end_0"), val = tensor<int32, [4]>([1, 4, 1, 1500])];
            tensor<bool, [4]> var_1003_end_mask_0 = const()[name = tensor<string, []>("op_1003_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_1003_cast_fp16 = slice_by_index(begin = var_1003_begin_0, end = var_1003_end_0, end_mask = var_1003_end_mask_0, x = obj_55_cast_fp16)[name = tensor<string, []>("op_1003_cast_fp16")];
            tensor<int32, [4]> var_1006_begin_0 = const()[name = tensor<string, []>("op_1006_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_1006_end_0 = const()[name = tensor<string, []>("op_1006_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_1006_end_mask_0 = const()[name = tensor<string, []>("op_1006_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_1006_squeeze_mask_0 = const()[name = tensor<string, []>("op_1006_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_1006_cast_fp16 = slice_by_index(begin = var_1006_begin_0, end = var_1006_end_0, end_mask = var_1006_end_mask_0, squeeze_mask = var_1006_squeeze_mask_0, x = var_1003_cast_fp16)[name = tensor<string, []>("op_1006_cast_fp16")];
            tensor<int32, [4]> var_1021_begin_0 = const()[name = tensor<string, []>("op_1021_begin_0"), val = tensor<int32, [4]>([0, 6, 0, 0])];
            tensor<int32, [4]> var_1021_end_0 = const()[name = tensor<string, []>("op_1021_end_0"), val = tensor<int32, [4]>([1, 7, 1, 1500])];
            tensor<bool, [4]> var_1021_end_mask_0 = const()[name = tensor<string, []>("op_1021_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_1021_cast_fp16 = slice_by_index(begin = var_1021_begin_0, end = var_1021_end_0, end_mask = var_1021_end_mask_0, x = obj_55_cast_fp16)[name = tensor<string, []>("op_1021_cast_fp16")];
            tensor<int32, [4]> var_1024_begin_0 = const()[name = tensor<string, []>("op_1024_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_1024_end_0 = const()[name = tensor<string, []>("op_1024_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_1024_end_mask_0 = const()[name = tensor<string, []>("op_1024_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_1024_squeeze_mask_0 = const()[name = tensor<string, []>("op_1024_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_1024_cast_fp16 = slice_by_index(begin = var_1024_begin_0, end = var_1024_end_0, end_mask = var_1024_end_mask_0, squeeze_mask = var_1024_squeeze_mask_0, x = var_1021_cast_fp16)[name = tensor<string, []>("op_1024_cast_fp16")];
            tensor<int32, [4]> var_1039_begin_0 = const()[name = tensor<string, []>("op_1039_begin_0"), val = tensor<int32, [4]>([0, 11, 0, 0])];
            tensor<int32, [4]> var_1039_end_0 = const()[name = tensor<string, []>("op_1039_end_0"), val = tensor<int32, [4]>([1, 12, 1, 1500])];
            tensor<bool, [4]> var_1039_end_mask_0 = const()[name = tensor<string, []>("op_1039_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_1039_cast_fp16 = slice_by_index(begin = var_1039_begin_0, end = var_1039_end_0, end_mask = var_1039_end_mask_0, x = obj_55_cast_fp16)[name = tensor<string, []>("op_1039_cast_fp16")];
            tensor<int32, [4]> var_1042_begin_0 = const()[name = tensor<string, []>("op_1042_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_1042_end_0 = const()[name = tensor<string, []>("op_1042_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_1042_end_mask_0 = const()[name = tensor<string, []>("op_1042_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_1042_squeeze_mask_0 = const()[name = tensor<string, []>("op_1042_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_1042_cast_fp16 = slice_by_index(begin = var_1042_begin_0, end = var_1042_end_0, end_mask = var_1042_end_mask_0, squeeze_mask = var_1042_squeeze_mask_0, x = var_1039_cast_fp16)[name = tensor<string, []>("op_1042_cast_fp16")];
            tensor<int32, [4]> var_1057_begin_0 = const()[name = tensor<string, []>("op_1057_begin_0"), val = tensor<int32, [4]>([0, 14, 0, 0])];
            tensor<int32, [4]> var_1057_end_0 = const()[name = tensor<string, []>("op_1057_end_0"), val = tensor<int32, [4]>([1, 15, 1, 1500])];
            tensor<bool, [4]> var_1057_end_mask_0 = const()[name = tensor<string, []>("op_1057_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
            tensor<fp16, [1, 1, 1, 1500]> var_1057_cast_fp16 = slice_by_index(begin = var_1057_begin_0, end = var_1057_end_0, end_mask = var_1057_end_mask_0, x = obj_55_cast_fp16)[name = tensor<string, []>("op_1057_cast_fp16")];
            tensor<int32, [4]> var_1060_begin_0 = const()[name = tensor<string, []>("op_1060_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
            tensor<int32, [4]> var_1060_end_0 = const()[name = tensor<string, []>("op_1060_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1500])];
            tensor<bool, [4]> var_1060_end_mask_0 = const()[name = tensor<string, []>("op_1060_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])];
            tensor<bool, [4]> var_1060_squeeze_mask_0 = const()[name = tensor<string, []>("op_1060_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])];
            tensor<fp16, [1, 1, 1500]> var_1060_cast_fp16 = slice_by_index(begin = var_1060_begin_0, end = var_1060_end_0, end_mask = var_1060_end_mask_0, squeeze_mask = var_1060_squeeze_mask_0, x = var_1057_cast_fp16)[name = tensor<string, []>("op_1060_cast_fp16")];
            tensor<int32, []> var_1067 = const()[name = tensor<string, []>("op_1067"), val = tensor<int32, []>(1)];
            tensor<bool, []> var_1068_interleave_0 = const()[name = tensor<string, []>("op_1068_interleave_0"), val = tensor<bool, []>(false)];
            tensor<fp16, [1, 6, 1500]> var_1068_cast_fp16 = concat(axis = var_1067, interleave = var_1068_interleave_0, values = (var_970_cast_fp16, var_988_cast_fp16, var_1006_cast_fp16, var_1024_cast_fp16, var_1042_cast_fp16, var_1060_cast_fp16))[name = tensor<string, []>("op_1068_cast_fp16")];
            tensor<bool, []> var_1071 = const()[name = tensor<string, []>("op_1071"), val = tensor<bool, []>(false)];
            tensor<int32, [1]> obj_axes_0 = const()[name = tensor<string, []>("obj_axes_0"), val = tensor<int32, [1]>([1])];
            tensor<fp16, [1, 1500]> alignment_heads_weights = reduce_mean(axes = obj_axes_0, keep_dims = var_1071, x = var_1068_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
        } -> (logits, key_cache_updates, value_cache_updates, alignment_heads_weights);
}