File size: 7,537 Bytes
e7a1876
 
 
 
 
66c91bd
 
 
 
883ce2d
e7a1876
 
 
 
 
 
 
 
 
 
 
 
d2a2733
ddbaae4
e7a1876
4ddcb94
 
e7a1876
 
 
 
 
 
 
d1fe899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883ce2d
35a8c91
883ce2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1fe899
883ce2d
 
 
 
 
 
d3dda12
 
883ce2d
 
 
 
 
 
e7a1876
d2a2733
883ce2d
 
 
d1fe899
 
e7a1876
 
 
 
 
 
 
 
 
 
4ddcb94
 
e7a1876
 
 
 
 
 
 
 
 
 
4ddcb94
 
 
 
 
 
 
 
e7a1876
 
 
 
 
 
 
66c91bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
- vandalism
- video-classification
- ucf-crime
- vandalism-dectection
- videomae
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucfcrime-full2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucfcrime-full2

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on the [UCF-CRIME](https://paperswithcode.com/dataset/ucf-crime)
dataset. code :  [github](https://github.com/archit-spec/majorproject)
It achieves the following results on the evaluation set:
- Loss: 2.5014
- Accuracy: 0.225

## Model description

More information needed

## Intended uses & limitations

## Inference using phone camera (have to download ipwebcam on phone from playstore) 
```python
import cv2
import torch
import numpy as np
from transformers import AutoImageProcessor, VideoMAEForVideoClassification

np.random.seed(0)

def preprocess_frames(frames, image_processor):
    inputs = image_processor(frames, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}  # Move tensors to GPU
    return inputs

# Initialize the video capture object, replace ip addr with the local ip of your phone  (will be shown in the ipwebcam app)
cap = cv2.VideoCapture('http://192.168.229.98:8080/video')

# Set the frame size (optional)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

image_processor = AutoImageProcessor.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
model = VideoMAEForVideoClassification.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")

# Move the model to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

frame_buffer = []
buffer_size = 16
previous_labels = []
top_confidences = []  # Initialize top_confidences

while True:
    ret, frame = cap.read()

    if not ret:
        print("Failed to capture frame")
        break

    # Add the current frame to the buffer
    frame_buffer.append(frame)

    # Check if we have enough frames for inference
    if len(frame_buffer) >= buffer_size:
        # Preprocess the frames
        inputs = preprocess_frames(frame_buffer, image_processor)

        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits

        # Get the top 3 predicted labels and their confidence scores
        top_k = 3
        probs = torch.softmax(logits, dim=-1)
        top_probs, top_indices = torch.topk(probs, top_k)
        top_labels = [model.config.id2label[idx.item()] for idx in top_indices[0]]
        top_confidences = top_probs[0].tolist()  # Update top_confidences

        # Check if the predicted labels are different from the previous labels
        if top_labels != previous_labels:
            previous_labels = top_labels
            print("Predicted class:", top_labels[0])  # Print the predicted class for debugging

        # Clear the frame buffer and continue from the next frame
        frame_buffer.clear()

        # Display the predicted labels and confidence scores on the frame
        for i, (label, confidence) in enumerate(zip(previous_labels, top_confidences)):
            label_text = f"{label}: {confidence:.2f}"
            cv2.putText(frame, label_text, (10, 30 + i * 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)

        # Display the resulting frame
        cv2.imshow('Video', frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

# Release everything when done
cap.release()
cv2.destroyAllWindows() 
```
## Simple usage
Usage: 
```python
import av
import torch
import numpy as np

from transformers import AutoImageProcessor, VideoMAEForVideoClassification
from huggingface_hub import hf_hub_download

np.random.seed(0)


def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (`av.container.input.InputContainer`): PyAV container.
        indices (`List[int]`): List of frame indices to decode.
    Returns:
        result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])


def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
    '''
    Sample a given number of frame indices from the video.
    Args:
        clip_len (`int`): Total number of frames to sample.
        frame_sample_rate (`int`): Sample every n-th frame.
        seg_len (`int`): Maximum allowed index of sample's last frame.
    Returns:
        indices (`List[int]`): List of sampled frame indices
    '''
    converted_len = int(clip_len * frame_sample_rate)
    end_idx = np.random.randint(converted_len, seg_len)
    start_idx = end_idx - converted_len
    indices = np.linspace(start_idx, end_idx, num=clip_len)
    indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
    return indices


# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(
    repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
)
# use any other video just replace `file_path` with the video path
container = av.open(file_path)

# sample 16 frames
indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container, indices)

image_processor = AutoImageProcessor.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
model = VideoMAEForVideoClassification.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")

inputs = image_processor(list(video), return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits

# model predicts one of the 13 ucf-crime classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```

# Inference Using
## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 700

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.5836        | 0.13  | 88   | 2.4944          | 0.2080   |
| 2.3212        | 1.13  | 176  | 2.5855          | 0.1773   |
| 2.2333        | 2.13  | 264  | 2.6270          | 0.1046   |
| 1.985         | 3.13  | 352  | 2.4058          | 0.2109   |
| 2.194         | 4.13  | 440  | 2.3654          | 0.2235   |
| 1.9796        | 5.13  | 528  | 2.2609          | 0.2235   |
| 1.8786        | 6.13  | 616  | 2.2725          | 0.2341   |
| 1.71          | 7.12  | 700  | 2.2228          | 0.2226   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2